Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T05:25:41.176Z Has data issue: false hasContentIssue false

Effect of Temperature Cycles on the Critical Current Density of YBa2Cu3O7-δ

Published online by Cambridge University Press:  28 February 2011

T. H. Tiefel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. Jin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. C. Sherwood
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. A. Fastnacht
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. Nakahara
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
G. Fisanick
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
T. Boone
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The transport Jc of the polycrystalline YBa2Cu3O7-δ superconductor seems to be dominated by weak links between high Jc regions as evidenced by low Jc values and their strong field dependence. The possible effects of thermal expansion-contraction and the tetragonal-orthorhombic transformation on the weak links and the Jc values were investigated by repeated thermal cycling of sintered pellets between -196°C and various high temperatures (600–850°C) using a furnace heating and cooling in an oxygen atmosphere. While more than a five-fold decrease in Jc from -400 to -70 A/cm2 (at 77K in zero field) is observed after 5 temperature cycles between -196'C and 850°C, only a slight decrease (to -370 Atm2) is noticed after 5 cycles between -196*C to 600°C, the temperature span of which is not all that much smaller than the former cycles. Transmission electron microscopy analysis clearly indicates that the drastic deterioration in Jc by repeated phase transformation is caused by increased amount of microcracks on (001) basal planes near the grain boundaries. The results will be discussed in terms of the large thermal expansion anisotropy of this layer-structured compound.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bednorz, J. B. and Muller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
[2] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
[3] Cava, R. J., Batlogg, B., van Dover, R. V., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Reitman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
[4] Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett. 55, 2687(1987).Google Scholar
[5] Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambiano, R. J., Phys. Rev. Lett. 58, 2684 (1987).Google Scholar
[6] Morris, D. E., Sheven, U. M., Bourne, L. C., Cohen, M. L., Crommie, M. F., and Zettl, A., Proc. Symposium on High Temperature Superconductors (Materials Research Society, Pittsburgh, PA 1987) Vol. EA–11, p. 209.Google Scholar
[7] Tarascon, J. M., McKinnon, W. R., Green, L. H., Hull, G. W., and Vogel, E. M., Phys. Rev. B 36, 226 (1987).Google Scholar
[8] Farrell, D. E., Chandraasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogar, V. K., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).Google Scholar
[9] Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R. B., and Johnson, D. W. Jr, Appl. Phys. Lett. 57, 203 (1987).Google Scholar
[10] Jin, S., Tiefel, T. H., Sherwood, R. C, Kammlott, G. W., and Zahurak, S. M., Appl. Phys. Lett. 57, 943(1987).Google Scholar
[11] Johnson, D. W. Jr, Gyorgy, E. M., Rhodes, W. W., Cava, R. J., Feldman, L. C., and van Dover, R. B., Adv. Ceram. Mater. 2, 374 (1987).Google Scholar
[12] Poeppel, R. B., Flandermeyer, B. K., Dusek, J. T., and Bloom, I. D. (unpublished).Google Scholar
[13] Ekin, J. W., Panson, A. J., Braginski, A. I., Janocko, M. A., Hong, M., Kwo, J., Liou, S. H., Capone, D. W., and Flandermeyer, B., Proc, Symposium on High Temperature Superconductors (Materials Research Society, Pittsburgh, PA, 1987), Vol. EA–11, p. 223.Google Scholar
[14] Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R. B., Johnson, D. W., and Grader, G. S., Appl. Phys. Lett. 57, 855 (1987).Google Scholar
[15] Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V. (unpublished).Google Scholar
[16] Jin, S., Sherwood, R. C., Gyorgy, E. M., Brasen, D., Tiefel, T. H., Fastnacht, R. A., Fisanick, G. J., and Davis, M. E. (unpublished).Google Scholar
[17] O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mat. 2, 640 (1987).Google Scholar
[18] Hewat, A. W., Capponi, J. J., Chaillout, C., Marezio, M., and Hewat, E. A., Nature (submitted).Google Scholar
[19] Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., Boone, T., and Moore, R., J. Cryst. Growth (to be published).Google Scholar