Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T22:12:41.719Z Has data issue: false hasContentIssue false

Effect of Substrate Strain and Interface on Magnetic Properties of EuTiO3 Thin Film

Published online by Cambridge University Press:  21 May 2012

Katsuhisa Tanaka
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Koji Fujita
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Yuya Maruyama
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Yoshiro Kususe
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Hideo Murakami
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Hirofumi Akamatsu
Affiliation:
Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Shunsuke Murai
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Get access

Abstract

Bulk EuTiO3 is known as a compound in which spin and soft phonon mode is strongly coupled. Recent theoretical study suggests that application of stress or formation of strain leads to a drastic change in magnetic and dielectric properties of EuTiO3 and that so-called multiferroic properties emerge under such a situation. In the present study, effect of strain induced by a substrate, on which EuTiO3 thin film is deposited, on the magnetic properties of the film has been experimentally examined. By using a pulsed laser deposition method, EuTiO3 thin film has been deposited on different kinds of substrate, i.e., LaAlO3, SrTiO3, and DyScO3; the lattice parameter of these compounds is smaller than, just the same as, and larger than that of EuTiO3, respectively. X-ray diffraction analysis confirms that the strain induced in the plane of as-deposited EuTiO3 thin films on different substrates is coincident with the lattice parameter of the substrate compounds. Also, all the as-deposited EuTiO3 thin films manifest elongation of lattice in a direction perpendicular to the film surface. Temperature dependence of magnetization indicates that all the thin films exhibit ferromagnetic behavior at low temperatures. The magnetization at 2 K under a magnetic field of 100 Oe is the highest for EuTiO3 on DyScO3 and the lowest for EuTiO3 on LaAlO3. The experimental result is coincident with the first-principles calculations which predict that ferromagnetic spin configuration becomes more stable as the lattice volume of EuTiO3is increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schooley, J. F., Hosler, W. R., Ambler, E., Becker, J. H., Cohen, M. L., and Koonce, C. S., Phys. Rev. Lett. 14, 305 (1965).CrossRefGoogle Scholar
Baratoff, A. and Binnig, G., Physica B 108, 1335 (1981).CrossRefGoogle Scholar
Leitner, A., Rogers, C. T., Price, J. C., Rudman, D. A., and Herman, D. R., Appl. Phys. Lett. 72, 3065 (1998).CrossRefGoogle Scholar
Olaya, D., Pan, F., Rogers, C. T., and Price, J. C., Appl. Phys. Lett. 84, 4020 (2004).CrossRefGoogle Scholar
Reyren, N., Thiel, S., Caviglia, A. D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C. W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M., Mannhart, J., Science 317, 1196 (2007).CrossRefGoogle Scholar
Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., and Koumoto, K., Nature Mater. 6, 129 (2007).CrossRefGoogle Scholar
McGuire, T. R., Shafer, M. W., Joenk, R. J., Alperin, H. A., and Pickart, S. J., J. Appl. Phys. 37, 981 (1966).CrossRefGoogle Scholar
Chien, C.-L., DeBenedetti, S., and De, F. Barros, S., Phys. Rev. B 10, 3913 (1974).CrossRefGoogle Scholar
Katsufuji, T. and Takagi, H., Phys. Rev. B 64, 054415 (2001).CrossRefGoogle Scholar
Viallet, V., Marucco, J.-F., Saint, J., Herbst-Ghysel, M., and Dragoe, N., J. Alloys Compd. 461, 346 (2008).CrossRefGoogle Scholar
Zong, Y., Fujita, K., Akamatsu, H., Murai, S., and Tanaka, K., J. Solid State Chem. 183, 168 (2010).CrossRefGoogle Scholar
Kolodiazhnyi, T., Fujita, K., Wang, L., Zong, Y., Tanaka, K., Sakka, Y., and Takayama-Muromachi, E., Appl. Phys. Lett. 96, 252901 (2010).CrossRefGoogle Scholar
Cheong, S. W. and Mostovoy, M., Nature Mater. 6, 13 (2007).CrossRefGoogle Scholar
Tokura, Y., Science 312, 1481 (2006).CrossRefGoogle ScholarPubMed
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Nature 426, 55 (2003).CrossRefGoogle Scholar
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).CrossRefGoogle Scholar
Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., and Tokura, Y., Phys. Rev. B 67, 180401 (2003).CrossRefGoogle Scholar
Fennie, C. J. and Rabe, K. M. Phys. Rev. Lett. 97, 267602 (2006).CrossRefGoogle Scholar
Ranjan, R., Nabi, H. S., and Pentcheva, R., J. Phys.: Condens. Matter 19, 406217 (2007).Google Scholar
Akamatsu, H., Kumagai, Y., Oba, F., Fujita, K., Murakami, H., Tanaka, K., and Tanaka, I., Phys. Rev. B 83, 214421 (2011).CrossRefGoogle Scholar
Fujita, K., Wakasugi, N., Murai, S., Zong, Y., and Tanaka, K., Appl. Phys. Lett. 94, 062512 (2009).CrossRefGoogle Scholar
Lee, J. H., Fang, L., Vlahos, E., Ke, X., Jung, Y. W., Fitting Kourkoutis, L., Kim, J.-W., Ryan, P. J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P. C., Rabe, K. M., Kamba, S., Schubert, J., Freeland, J. W., Muller, D. A., Fennie, C. J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., and Schlom, D. G., Nature 466, 954 (2010).CrossRefGoogle Scholar
Takahashi, K. S., Onoda, M., Kawasaki, M., Nagaosa, N., and Tokural, Y., Phys. Rev. Lett. 103, 057204 (2009).CrossRefGoogle Scholar
Chien, C.-L., DeBenedetti, S., and Barros, F. D. S., Phys. Rev. B 10, 3913 (1974).CrossRefGoogle Scholar
Shafer, M. W., J. Appl. Phys. 36, 1145 (1965).CrossRefGoogle Scholar
Kunes, J., Ku, W., and Pickett, W. E., J. Phys. Soc. Jpn. 74, 1408 (2005).CrossRefGoogle Scholar
Souza-Neto, N. M., Haskel, D., Tseng, Y.-C., and Lapertot, G., Phys. Rev. Lett. 102, 057206 (2009).CrossRefGoogle Scholar