Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T23:45:18.060Z Has data issue: false hasContentIssue false

Effect of Solvent Condition on the Dynamic Response of Polymer Brushes

Published online by Cambridge University Press:  10 February 2011

S. M. Kilbey II
Affiliation:
Department of Chemical Engineering and Materials Science University of Minnesota 421 Washington Avenue SE Minneapolis, MN 55455
P. Schorr
Affiliation:
Department of Chemical Engineering and Materials Science University of Minnesota 421 Washington Avenue SE Minneapolis, MN 55455
M. Tirrell
Affiliation:
Department of Chemical Engineering and Materials Science University of Minnesota 421 Washington Avenue SE Minneapolis, MN 55455
Get access

Abstract

The frictional response of two opposing polymer brushes subjected to steady shear was studied as a function of solvent condition and degree of compression using the Surface Forces Apparatus (SFA). The brushes were made by preferential adsorption of polyvinylpryridinepolystyrene (PVP-PS) block copolymers adsorbed onto atomically smooth surfaces from a dilute solution of toluene. Extremely parallel lateral motion was imparted to one surface and the response was detected at the opposing brush-covered surface. When the brushes were bathed in a good solvent, it was necessary to strongly compress the layers in order to observe frictional forces transmitted between the surfaces. However, when the solvent was changed to a near-theta solvent, large frictional forces were measured at weaker compressions. The onset of these frictional forces occurred at distances comparable to the distance at which the opposing layers contact one another and rapidly increase as the brushes are compressed. Arguments are advanced that this behavior is attributable to frictional interactions between the polymer chains and the solvent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hadziioannou, G.,Patel, S.,Tirrell, M., J. Am. Chem. Soc. 108, 2869 (1986).Google Scholar
2. Tirrell, M.,Patel, S.,Hadziioannou, G., Proc. Natl. Acad. Sci. 84, 4725 (1987).Google Scholar
3. Watanabe, H.,Tirrell, M., Macromolecules 26, 6455 (1993).Google Scholar
4. Dhoot, S.,Watanabe, H.,Tirrell, M., Colloids and Surfaces A 86, 47 (1994).Google Scholar
5. Patel, S. S.,Tirrell, M., Annu. Rev. Phys. Chem. 40, 597 (1989).Google Scholar
6. Auroy, P.,Mir, Y.,Auvray, L., Phys. Rev. Lett. 69, 93 (1992).Google Scholar
7. Karim, A.,Satija, S. K.,Douglas, J. F.,Anker, J. F.,Fetters, L. J., Phys. Rev. Lett. 73, 3407 (1994).Google Scholar
8. Mansfield, T. L.,Iyengar, D. R.,Beaucage, G.,McCarthy, T. J.,Stein, R. S., RJ. Composto, Macromolecules 28, 492 (1995).Google Scholar
9. Webber, R. M.,Linden, C. C. van der,Anderson, J. L., Langmuir 12, 1040 (1996).Google Scholar
10. Alexander, S., J. Phys. (France) 38, 983 (1977).Google Scholar
11. de Gennes, P.G., Macromolecules 13, 1069 (1980).Google Scholar
12. Hirz, S. J., Masters Thesis, University of Minnesota (1986).Google Scholar
13. Milner, S. T.,Witten, T. A.,Cates, M. E., Macromolecules 21, 2610 (1988).Google Scholar
14. Halperin, A., J. Phys. (France) 49, 547 (1988).Google Scholar
15. Dolan, A. K.,Edwards, S. F., Proc. R. Soc. Lond. A 343, 427 (1975).Google Scholar
16. Cosgrove, T.,Heath, T.,van Lent, B.,Leermakers, F.,Scheutjens, J. H. M. S., Macromolecules 20, 1692 (1987).Google Scholar
17. Milner, S. T., J. Chem. Soc. Faraday Trans. 86, 1349 (1990).Google Scholar
18. Klein, J.,Kumacheva, E.,Perahia, D.,Mahalu, D.,Warburg, S., Faraday Discuss. 98, 173 (1994).Google Scholar
19. Klein, J., Annual Review of Material Science 26, 581 (1996).Google Scholar
20. Pelletier, E.,Belder, G. F.,Hadziioannou, G., A. Subbotin J. Phys. (France) 7, 271 (1997).Google Scholar
21. Dhinojwala, A.,Cai, L.,Granick, S., Langmuir 12, 4537 (1996).Google Scholar
22. Granick, S.,Demirel, A. L.,Cai, L. L.,Peanasky, J., J. Chem. (Israel) 35, 75 (1995).Google Scholar
23. Cai, L. L.,Peanasky, J.,Granick, S., Trends in Polym. Sci. 4, 47 (1996).Google Scholar
24. Kilbey, S. M. II, Doctoral Thesis, University of Minnesota (1996).Google Scholar
25. Kilbey, S. M. II,Bates, F. S.,Tirrell, M., unpublished data.Google Scholar
26. Grest, G. S., Adv. Poly. Sci. 138, 149 (1999).Google Scholar
27. Klein, J.,Perahia, D.,Warburg, S., Nature 352, 143 (1991).Google Scholar
28. Barrat, J.-L, Macromolecules 25, 832 (1992).Google Scholar
29. Harden, J. L.,Cates, M. E., Phys. Rev. E 53, 3782 (1996).Google Scholar
30. Rabin, Y.,Alexander, S., Europhys. Lett. 13, 49 (1990).Google Scholar
31. Grest, G. S., in Dynamics in Small Confining Systems III, edited by Drake, J. M.,Klafter, J., and Kopelman, R. (Mater. Res. Soc. Proc. 464, Pittsburgh, PA 1997), p. 71.Google Scholar
32. Miao, L.,Guo, H.,Zuckerman, M. J., Macromolecules 29, 2289 (1996).Google Scholar
33. Lai, P.-Y.,Binder, K., J. Chem. Phys. 98, 2366 (1993).Google Scholar
34. Lai, P.-Y.,Lai, C.-Y., Phys. Rev. E 54, 6958 (1996).Google Scholar
35. Shearing velocities used ranged from 4.4 nm/s to 70 nm/s and the maximum amplitude used was less than 2 μm. During the shearing experiments, the movement of the surfaces normal to one another was less than 10 Å at the largest shear amplitudes explored.Google Scholar
36. Kilbey, S. M. II,Bates, F.,Tirrell, M.,Yoshizawa, H.,Hill, R.,Israelachvili, J., Macromolecules 28, 5626 (1995).Google Scholar
37. Klein, J.,Kumacheva, E.,Mahalu, D.,Perahia, D.,Fetters, L. J., Nature, 370, 634 (1994).Google Scholar
38. Kelley, T. W.,Schorr, P.,Johnson, K. D.,Tirrell, M.,Frisbie, D., Macromolecules, 31, 4297 (1998)Google Scholar
39. see for example, Israelachvili, J. N., Surf. Sci. Reports 14, 109 (1992).Google Scholar
40. Joanny, J.-F., Langmuir 8, 989 (1992).Google Scholar
41. Semenov, A. N., Langmuir 11, 3560 (1995).Google Scholar