Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T00:36:31.807Z Has data issue: false hasContentIssue false

Effect of Silicon Surface Treatments on Thin Silicon Nitride Growth

Published online by Cambridge University Press:  22 February 2011

Makoto Nakamura
Affiliation:
FUJITSU LIMITED Basic Process Development Division, 1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211 JAPAN
Yoshio Kikuchi
Affiliation:
FUJITSU LIMITED Basic Process Development Division, 1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211 JAPAN
Masahiro Kuwamura
Affiliation:
FUJITSU LIMITED Basic Process Development Division, 1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211 JAPAN
Masamichi Yoshida
Affiliation:
FUJITSU LIMITED Basic Process Development Division, 1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211 JAPAN
Get access

Abstract

Ultra thin silicon nitride films have been indispensable in high density memory devices as a dielectric. We investigated the effect of the silicon surface state on initial silicon nitride growth process, we have used X-ray Photoelectron spectrometry (XPS), Secondary ion mass spectrometry(SIMS), and Capacitance-Voltage(C-V) characteristics. The results of our study show that the fluorine on silicon surface influences initial silicon nitride growth. The presence of fluorine delays low pressure chemical vapor deposition(LPCVD) silicon nitride growth as well as restraining native oxide growth at the silicon nitride/silicon substrate interface. We propose that it is a key process of thin dielectric films deposition to control fluorine on silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohmi, T.: Technical Digest, Inter. Elect. Device Meeting, (1989) 53 Google Scholar
2. Miki, N., Kawanabe, I. and Ohmi, T.: Inter. Conf. on Solid State Devices and Materials, (1990) 1095 Google Scholar
3. Morita, M., and Ohmi, T.: J. Ultra clean Tech., 1 (1989) 22 Google Scholar
4. Hattori, T.: J. Ultra clean Tech., 1 (1989) 29 Google Scholar
5. Sugiyama, K., Igarashi, T., Moriki, K., Nagasawa, Y., Aoyama, T., Sugino, R., Ito, T. and Hattori, T.: Inter. Conf. Solid State Devices and Materials, (1990) 1075 Google Scholar
6. deLarios, J. M., Kao, D. B. and Deal, B. E.: J. Electrochem. Soc., 38 (1991) 8 Google Scholar
7. Kern, W.: J. Electrochem. Soc., 137 (1990) 6 Google Scholar
8. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. and Suma, K.: Symposium on VLSI Tech., (1989) 75.Google Scholar
9. Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K.: Appl. Phys. Lett., 56 (1990) 656.Google Scholar
10. Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y.: J. App. Phys., 64 (1988) 3516 Google Scholar
11. Sunada, T., Yasaka, T., Takakura, M., Sugiyama, T., Miyazaki, S., and Hirose, M.: Inter. Elect. Conf. Solid State Devices and Materials, (1990) 1071 Google Scholar
12. Shirley, D. A.: Phys. Rev., B5, (1972) 4709 Google Scholar