Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:32:49.304Z Has data issue: false hasContentIssue false

The Effect of Nitrogen on the Oxidation of TiAl

Published online by Cambridge University Press:  22 February 2011

Franz Dettenwanger
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestraße 92, D-70174 Stuttgart, Germany
E. Schumann
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestraße 92, D-70174 Stuttgart, Germany
M. RÜhle
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestraße 92, D-70174 Stuttgart, Germany
J. Rakowski
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
G. H. Meier
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
Get access

Abstract

Ti-50(at.%)Al samples were oxidized at 900°C in air for 1 hour and studied by electron microscopy. The application of electron spectroscopic imaging with energy filtered TEM permitted the imaging of the distribution of the relevant elements (Ti, Al, O, N) within the oxide scale. With this method the formation of TiN in the inner part of the scale could be shown. The oxidation in air lead to an alternating scale containing TiN and alumina near the metal/scale interface. The formation of an aluminum-depleted second metallic phase in the metal beneath the oxide scale was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choudhury, N. S., Graham, H. C., Hinze, J. W., Oxidation Behavior of Titanium Aluminides, Foroulis, Z. A., Pettits, F. S., Eds., Proceedings of the Symposium on Properties of High Temperature Alloys (The Electrochemical Society, Princeton, N.J., 1977), pp. 668.Google Scholar
2. Meier, G. H., Appalonia, D., Perkins, R. A., Chiang, K. T., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T., Doychak, J., (The Minerals, Metals & Materials Society, 1989) pp. 185.Google Scholar
3. Goldstein, J. I., Williams, D. B., in Quantitative Microanalysis with High Spatial Resolution, edited by Lorimer, G. W., Jacobs, M. H., Doig, P., (The Metals Society, London, 1981) pp. 5.Google Scholar
4. Lee, E. U., Waldman, J., Scripta Metall. 22, 1389 (1988).Google Scholar
5. Becker, S., Rahmel, A., Schorr, M., Schiitze, M., Oxid. Met. 38, 425 (1992).Google Scholar
6. Herold-Schmidt, U., Opolka, B., Schwantes, S., Prakt. Metallogr. 30, 344 (1993).Google Scholar
7. Schuster, J. C., Ipser, H., Metallkde, Z..81,389 (1990).Google Scholar
8. Dowling, W. E. Jr., Donlon, W. T., Scripta Metall. Mater. 27, 1663 (1992).Google Scholar
9. Dowling, W. E. Jr., Donlon, W. T., Mat. Res. Soc. Symp. Proc. 288, 629 (1993).Google Scholar
10. Beye, R. W., Gronsky, R., Acta metall. mater. 42, 1373 (1994).Google Scholar