Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T06:44:07.462Z Has data issue: false hasContentIssue false

The effect of molybdenum trioxide inter-layer between indium tin oxide (ITO) and organic semiconductor on the energy level alignment

Published online by Cambridge University Press:  31 January 2011

Irfan Irfan
Affiliation:
irfan4phy@gmail.comirfan2@pas.rochester.edu, University of Rochester, Physics and Astronomy, Rochester, New York, United States
Huanjun Ding
Affiliation:
hjding@pas.rochester.edu, University of Rochester, Physics and Astronomy, Rochester, New York, United States
Yongli Gao
Affiliation:
ygao@pas.rochester.edu, University of Rochester, Physics and Astronomy, Rochester, New York, United States
Do Yang Kim
Affiliation:
dykim911@ufl.edu, University of Florida, Material Science and Engineering, gainesville, Florida, United States
Jegadesan Subbiah
Affiliation:
sjegan@ufl.edu, University of Florida, Material Science and Engineering, Gainesville, Florida, United States
Franky So
Affiliation:
fso@mse.ufl.edu, University of Florida, Material Science and Engineering, Gainesville, Florida, United States
Get access

Abstract

We investigated 0 to 300 Å thick stepped molybdenum trioxide (MoO3) inter-layer between in-situ oxygen plasma treated conducting indium tin oxide (ITO) and chloro-aluminum pthalocyanine (AlPc-Cl) layer-by-layer evaporated up to 228 Å, with ultra-violet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPES). The MoO3 inter-layers were observed to increase the surface workfunction. The workfunction increase was observed to saturate at 20 Å of MoO3 coverage. The increased surface workfunction causes hole accumulation and band bending in the subsequently deposited AlPc-Cl. A possible explanation of reduction in series resistance by the insertion of the MoO3 insulating layer is discussed based on these observations and energy level alignment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tang, C. W., Appl. Phys. Lett. 48, 183(1986).Google Scholar
2 Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913(1987).Google Scholar
3 Tokito, S., Noda, K. and Taga, Y., J. Phys D: Appl. Phys. 29, 2750(1996).Google Scholar
4 Wang, F., Qiao, X., Xiong, T. and Ma, D., Org. Electron. 9, 985(2008). Lett. 93, 043308(2008).Google Scholar
5 Shrotriya, V., Li, G., Yao, Y., Chu, C. and Yang, Y., Appl. Phys. Lett. 88, 073508(2006).Google Scholar
6 Kim, D. Y., Subbiah, J., Sarasqueta, G., So, F., Ding, H., , Irfan, and Gao, Yongli, Appl. Phys. Lett. 95, 093304(2009).Google Scholar
7 Kroger, M., Hamwi, S., Meyer, J., Riedl, T., Kowlasky, W. and Kahn, A., Appl. Phys. Lett. 95, 123301(2009).Google Scholar
8 Lee, H., Cho, S. W., Han, K., Jeon, P. E., Whang, C. N., Jeong, K, Cho, K and Yi, Y, Appl. Phys. Lett. 93, 043308(2008).Google Scholar
9 Watkin, N. J. and Gao, Y., J. Appl. Phys. 94, 5782(2003).Google Scholar
10 Cattin, L., Dahou, F., Lare, Y., Morsli, M., Tricot, R., Houari, S., Mokrani, A., Jondo, K., Khelil, A., Napo, K., and Bernede, J. C., J. Appl. Phys. 105, 034507(2009).Google Scholar