Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T03:56:11.767Z Has data issue: false hasContentIssue false

Effect of Layer Relaxation on the Internal Photoemission in Pt/Si1−xGex Schottky Barrier Type Infrared Detectors

Published online by Cambridge University Press:  10 February 2011

B. Aslan
Affiliation:
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
R. Turan
Affiliation:
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
O. Nur
Affiliation:
Department of Microelectronics and Nano-Science, Chalmers University of Technology, S-412 96 Göteborg, Sweden
M. Karlsteen
Affiliation:
Department of Microelectronics and Nano-Science, Chalmers University of Technology, S-412 96 Göteborg, Sweden
M. Willander
Affiliation:
Department of Microelectronics and Nano-Science, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Get access

Abstract

A Schottky type infrared detector fabricated on a p-type Si1−xGex substrate has a higher cut-off wavelength than one on a pure Si substrate because the barrier height of the Schottky junction on p-type Si1−xGex decreases with the Ge content and the induced strain in the Si1−xGex layer. We have studied the effect of the strain relaxation on the internal photoemission and I-V characteristics of a Pt/Si1−xGex Schottky junction with x=0.14. It is shown that the cut-off wavelength of the diode made on a strained Si0.86Ge0.14 layer is higher than that on a Si substrate as expected. This shows the possibility of tuning the range of these detectors in the mid-infrared region. However, the thermal relaxation in the Si0.86Ge0.14 layer is found to reduce the cut-off wavelength to lower values, showing that the difference between the Fermi level of the metal and the valence band edge increases with the layer relaxation. This effect should be taken into account when a Schottky type infrared detector is manufactured on a strained Si1−xGex film. I-V characteristics of the junctions also indicate an increase of the barrier height with the relaxation of Si1−xGex. These results demonstrate the band edge movements in a Si ixGex layer experimentally agree with the expected changes in the band structure of the Si1−xGex layer with strain relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., IEEE Trans. Electron Devices ED-36, 2043 (1989).Google Scholar
2. Daembkes, H., Herzog, H-J., Jorke, H., Kibbel, H., and Kasper, E., IEEE Trans. Electron Devices ED-33, 633 (1986).Google Scholar
3. Lin, T.L., Ksendzov, A., Dejewski, S. M., Jones, E. W., Fathauer, R. W., Krabach, T. N., Maserjian, J., IEEE Trans. Electron Devices, ED-38, 1141 (1991).Google Scholar
4. Nur, O., Sardela, M. R., Willander, M., and Turan, R., Semicond. Sci. Technol. 10, 551 (1995).Google Scholar
5. Nur, O., Willander, M., Turan, R., Sardela, M. R. Jr, and Hansson, G. V., Appl. Phys. Lett. 68, 1084 (1996).Google Scholar
6. Nur, O., Willander, M., Turan, R., Sardela, M. R. Jr, Radamson, H. H., and Hansson, G. V., J. Vac. Sci. Technol. B 15, 241 (1997).Google Scholar
7. Nur, O., Karlsteen, M., Willander, M., Asian, B., Turan, R., Tanner, M. O., and Wang, K. L., Appl. Phys. Lett. 73, 3920 (1998).Google Scholar
8. Sardela, M. R. Jr, Radamson, H. H., Ekberg, J. O., Sundgren, J.-E. and Hansson, G. V., J. Cryst. Growth 143, 184 (1994).Google Scholar
9. Fewster, P. F., Semicond. Sci. Technolo. 8, 1915 (1993).Google Scholar
10. Mooney, J. M. and Silverman, J., IEEE Transac. on Electron Devices, ED-32, 33 (1985).Google Scholar
11. Aslan, B. and Turan, R., in Proceeding International School of Solid State Physics, 1999, Erice, Italy, (in press).Google Scholar
12. Rhoderick, E. H. and Williams, R. H., Metal/Semiconductor Contacts, (Oxford University Press, Second Ed., 1988).Google Scholar
13. Aniltirk, O. S., and Turan, R., Solid-State Electronics, Solid State Electronics, 44, 41 (2000).Google Scholar
14. Walle, C. G. Van de, in “Silicon Germanium” by INSPEC, 1995, p110.Google Scholar
15. Lang, D. V., People, R., Bean, J. C. and Sergent, M., Appl. Phys. Lett. 47, 1333 (1985).Google Scholar