Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:47:29.203Z Has data issue: false hasContentIssue false

The Effect of Implantation and Annealing Conditions on the Fe Profile in Semi-Insulating InP.

Published online by Cambridge University Press:  28 February 2011

G. Bahir
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
J. L. Merz
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
J. R. Abelson
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
T. W. Sigmon
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
Get access

Abstract

The Fe depth distribution has been measured in semi-insulating (SI) InP implanted with Si as a function of implant temperature and post-implant annealing technique (either furnace annealing or rapid thermal annealing). Depth profiles obtained by secondary ion mass spectrometry and Rutherford backscattering measurements of the damage demonstrate that Fe redistributes into regions of residual damage during thermal processing. These results are interpreted in terms of implantation-related damage effects and the stoichiometry imbalance induced by the Si implantation.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gauneau, M., L'Haridon, H., Rupert, A. and Salvi, M., J. Appl. Phys. 53, 6823 (1982).CrossRefGoogle Scholar
2. Gauneau, M., Chaplain, R. and Rupert, R., J. Appl. Phys. 57, 1029 (1985).CrossRefGoogle Scholar
3. Magee, T.J., Kawayoshi, H., Ormond, R.D., Christel, L.A., Gibbons, J.F., Hopkins, C.G., Evans, C. A. Jr. and Day, D.S., Appl. Phys. Lett. 39, 906 (1981).CrossRefGoogle Scholar
4. Lecrosnier, D., Nucl. Instrum. and Methods, 209, 325 (1983).CrossRefGoogle Scholar
5. Vasuder, P.K., Wilson, R.G. and Evans, C.A., Jr. Appl. Phys. Lett. 37, 308 (1980).Google Scholar
6. Schwarz, S.A., Schwartz, B. and Tell, B., J. Appl. Phys. 58, 1698 (1985).Google Scholar
7. Bahir, G., Merz, J.L., Abelson, J.R. and Sigmon, T.W., Proceedings of the SPIE 623, 149 (1986).CrossRefGoogle Scholar
8. Oberstar, J.D., Streetman, B.G., Baker, J.E. and Williams, P., J. Electrochem. Soc. 129, 1312 (1982).Google Scholar
9. Christel, L.A. and Gibbons, J.F., J. Appl. Phys. 52, 5050 (1981).CrossRefGoogle Scholar
10. Christel, L.A., Gibbons, J.F. and Mylroie, S., J. Appl. Phys. 51, 6176 (1980).CrossRefGoogle Scholar
11. Sadana, D. K., Nucl. Instrum. and Methods, B7, 375 (1985).CrossRefGoogle Scholar