Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:57:47.142Z Has data issue: false hasContentIssue false

Effect of DBD plasma on human cells in presence of osmolytes and denaturant

Published online by Cambridge University Press:  16 May 2012

Nagendra Kumar Kaushik
Affiliation:
Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea 139-701
Pankaj Attri
Affiliation:
Department of Chemistry, University of Delhi, Delhi, INDIA 110007
Eun-Ha Choi
Affiliation:
Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea 139-701
Neha Kaushik
Affiliation:
Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea 139-701
Get access

Abstract

Non thermal plasma is emerging as a novel tool for the treatment of living tissues for biological and medical purpose. In this study we described the effect of DBD (dielectric barrier discharge) plasma on both cancer and normal cell line in presence of osmolytes. Osmolytes having unique protective metabolic roles and also found in animal body, they are acting as antioxidants, providing redox balance, detoxifying sulfide, protect macromolecules, enhance protein folding and regulate cell volume. Based on these interesting properties of osmolytes, non thermal plasma in presence of osmolytes appears to provide a new outlook. Results of this study reveals that osmolytes in presence of plasma act as protecting agent for normal cells however, not to cancer cells in the presence of plasma. The main goal of this study is to protect normal cells from the toxic effect of DBD plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Favia, P., Plasma Process Polym. 3, 381 (2006).Google Scholar
2. Fridman, G., Shereshevsky, A., Jost, M. M., Brooks, A. D., Fridman, A., Gutsol, A., Vasilets, V. and Friedman, G., Plasma Chem. Plasma P. 27, 163 (2007).Google Scholar
3. Fridman, G., Peddinghaus, M., Ayan, H., Fridman, A., Balasubramanian, M., Gutsol, A., Brooks, A. and Friedman, G., Plasma Chem. Plasma P. 26, 425 (2006).10.1007/s11090-006-9024-4Google Scholar
4. Hall, E. H., Schoenbach, K. H. and Beebe, S. J., Apoptosis 12, 1721 (2007).10.1007/s10495-007-0083-7Google Scholar
5. Shekhter, A. B., Serezhenkov, V. A., Rudenko, T. G., Pekshev, A. V. and Vanin, A. F., Nitiric Oxide: Biol. Chem. 12, 210 (2005).10.1016/j.niox.2005.03.004Google Scholar
6. Kim, G. C., Kim, G. J., Park, S. R., Jeon, S. M., Seo, H. J., Iza, F. and Lee, J. K., J. Phys D: Appl Phys. 42, 032005 (2009).10.1088/0022-3727/42/3/032005Google Scholar
7. Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., Nosenko, T., Zimmermann, J. L. and Karrer, S., J. Eur. Acad. Derma. Venere. 25, 1 (2011).10.1111/j.1468-3083.2010.03702.xGoogle Scholar
8. Yancey, P. H., J. Exp Biol. 208, 2819 (2005).Google Scholar
9. Lang, F., Busch, G. L., Ritter, M., Volki, H., Waldegger, S., Gulbins, E. and Haussinger, D., Physiol. Rev. 78, 247 (1998).10.1152/physrev.1998.78.1.247Google Scholar
10. Lang, F., Mechanisms and Significance of Cell Volume Regulation. J. Am. Coll. Nutr. 26, 613S (2007).Google Scholar
11. Burg, M. B. and Ferraris, J. D., J. Bio. Chem. 283, 7309 (2008).Google Scholar
12. Mosmann, T., J. Immunol Meth. 65, 55 (1983).10.1016/0022-1759(83)90303-4Google Scholar
13. Singh, A., Kaushik, N. K., Verma, A. K., Hundal, G. and Gupta, R., Eur. J. Med. Chem. 44, 1607 (2009).10.1016/j.ejmech.2008.07.029Google Scholar
14. Wahab, R., Kaushik, N. K., Verma, A. K., Mishra, A., Hwang, I. H., Yang, Y. B., Shin, H. S. and Kim, Y. S., J. Biol. Inorg. Chem. 16, 431 (2011).10.1007/s00775-010-0740-0Google Scholar
15. Kaushik, N. K., Uhm, H. S., Choi, E. H.. Appl. Phys. Lett. 100, 084102 (2012).Google Scholar