Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T06:05:09.140Z Has data issue: false hasContentIssue false

The Effect Of Composition Modification on the Optical Polarization Independence In Semiconductor Strain Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Wallace C. H. Choy
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, ehli@hkueee.hku.hk
Hao Feng
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, ehli@hkueee.hku.hk
S. K. Kam
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, ehli@hkueee.hku.hk
E. Herbert Li
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, ehli@hkueee.hku.hk
Get access

Abstract

Polarization independent quantum well (QW) materials operating under electroabsorption effect in optical switching and modulation devices are of intense interest recently. This is a theoretical analysis of the optical properties of strained InGaAs/InP QWs. The method of composition modification based on interdiffusion will be introduced to merge the heavy- and light- hole states in order to achieve polarization insensitivity. Results presented here show that the diffused QWs with and without as-growth tensile strain can both serve in polarization independent electro-absorption requirements. With a suitable design in the interdiffused QW materials, the optical polarization independence can operate from 1.465 to 1.540 μm (tunability of 75 nm) with a maximum absorption change of 2000 cm−1. In the case studied here, over 75% reduction in the required as-growth tensile strain is achieved as compared with the conventional rectangular QWs. This provides us with a simpler way to achieve high strain optical polarization independence through interdiffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamamoto, H., Asada, M. and Snematsu, Y., J. Lightwave Technol. 6, 1831 (1988).Google Scholar
2. Wakita, K., Kawamura, Y., Nabeto, M., and Asai, H., IEEE J. Quantum Electron. 23, 2210 (1987).Google Scholar
3. Chau, Y. C. and Tada, K., IEEE Photon. Technol. Lett. 5, 1380 (1993).Google Scholar
4. Aizawa, T., Ravikumar, K. G., Suzaki, S., Watanabe, T., and Yamanchi, R., IEEE J. Quantum Electron. 30, 585 (1994).Google Scholar
5. Li, E. H. and Weiss, B. L., IEEE Photon Technol. Lett. 4, 445 (1993).Google Scholar
6. Mukai, K., Sugawara, M., and Yamazaki, S., Phys. Rev. B 50, 2273 (1994).Google Scholar
7. Fujii, T., Sugawara, M., Yazaki, S. and Nakajima, K., J. Crys. G. 105, 348 (1990).Google Scholar
8. Micallef, J., Li, E. H., and Weiss, B. L., J. Appl. Phys., 73, 7524 (1993).Google Scholar
9. Chong, T. C., Wan, H. W., and Chua, S. J., Electron. Lett. 26, 1060 (1990).Google Scholar
10. Ishikawa, T., Nishimura, S. and Tada, K., Japan. J. Appl. Phys. 29, 1466 (1990).Google Scholar
11. Zucker, J. C., Jones, K. L., Chiu, T. H., Tell, B. and Goebeler, K. B., IEEE J. Lightwave Technol. 10, 1926 (1992).Google Scholar
12. Yamaaguchi, T., Morimoto, T., Nakano, Y., and Tada, K., Technical Digest, Topcial Meeting on Integrated Photonics Research (IPR' 94), FFG, 263 (1994).Google Scholar
13. Tai, K., Hegarty, K. J., and Tsang, W. T., Appl. Phys. Lett. 51, 152 (1987).Google Scholar
14. Kawaguchi, Y. G. and Asahi, H., Appl. Phys. Lett. 50, 1243 (1987).Google Scholar
15. Kuo, C. P., Fry, K. L., and Stringfellow, G. B., Appl. Phys. Lett. 47, 885 (1985).Google Scholar
16. Marsh, J. H., Roberts, J. S., and Calxton, P. A., Appl. Phys. Lett. 46, 1161 (1985).Google Scholar