Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T09:43:41.739Z Has data issue: false hasContentIssue false

Effect of Alloying Elements on the Elastic Properties of γ-Ni and γ'-Ni3Al from First-principles Calculations

Published online by Cambridge University Press:  31 January 2011

Yunjiang Wang
Affiliation:
wangyunjiang05@mails.tsinghua.edu.cn, Tsinghua University, Department of Physics, Beijing, China
Chongyu Wang
Affiliation:
cywang@mail.tsinghua.edu.cn, Department of Physics, Tsinghua University, Beijing 100084, China, Beijing, China
Get access

Abstract

The effect of alloying elements Ta, Mo, W, Cr, Re, Ru, Co, and Ir on the elastic properties of both γ-Ni and γ′-Ni3Al is studied by first-principles method. Results for lattice properties, elastic moduli and the ductile/brittle behaviors are all presented. Our calculated values agree well with the existing experimental observations. Results show all the additions decrease the lattice misfit between and γ′ phases. Different alloying elements are found to have different effect on the elastic moduli of γ-Ni. Whereas all the alloying elements slightly increase the moduli of γ′-Ni3Al expect Co. Both of the two phases are becoming more brittle with alloying elements, but Co is excepted. The electronic structures of γ′ phase alloyed with different elements are provided as example to elucidate the different strengthening mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pollock, T. M., and Tin, S., J. Propul. Power 22, 361 (2006).Google Scholar
[2] Sims, C. T., Superalloy II (Wiley, New York, 1987), pp. 97131.Google Scholar
[3] Feng, Q., Nandy, T. K., Tin, S., and Pollock, T. M., Acta Mater. 51, 269 (2003).Google Scholar
[4] Mitchell, R. J., Preuss, M., Metall. Mater. Trans. A 38A, 615 (2007).Google Scholar
[5] Mughrabi, H., Tetzlaff, U., Adv. Eng. Mater. 2, 319 (2000).Google Scholar
[6] Schmidt, R., Feller-Kniepmeier, M., Scripta Metall. Mater. 29, 863 (1993).Google Scholar
[7] Šob, M., Friák, M., Legut, D., Fiala, J. and Vitek, V., Mater. Sci. Eng. A 387-389, 148 (2004).Google Scholar
[8] Ogata, S., Umeno, Y., and Kohyama, M., Modelling Simul. Mater. Eng. 17, 013001 (2009).Google Scholar
[9] Yao, Q., Xing, H. and Sun, J., Appl. Phys. Lett. 89, 161906 (2006).Google Scholar
[10] Mehl, M. J., Klein, B. M., and Papaconstantopoulos, D. A., in Intermetallic Compounds: Priciples and Practice, editored by Westbrook, J. H. and Fleisher, R. L. (Wiley, New York, 1994), Vol. 1. pp. 195209.Google Scholar
[11] Zhang, R. F., Veprek, S., Argon, A. S., Appl. Phys. Lett. 91, 201914 (2007).Google Scholar
[12] Kresse, G., Hafner, J., Phys. Rev. B 48, 13115 (1993).Google Scholar
[13] Wang, Y., and Perdew, J. P., Phys. Rev. B 44, 13298 (1991).Google Scholar
[14] Kresse, G., Joubert, J., Phys. Rev. B 59, 1758 (1999).Google Scholar
[15] Murnaghan, F. D., Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
[16] Kittle, C., Introduction to solid state physics. New York: Wiley Intersecience, 1986.Google Scholar
[17] Yoo, M. H., Acta Metall. 35, 1559 (1987).Google Scholar
[18] Hill, R., Proc. Phys. Soc. London 65, 349 (1952).Google Scholar
[19] Grimvall, G., Thermophysical properties of materials (NorthHolland, Amsterdam, 1999).Google Scholar
[20] Pettifor, D. G., Solid St. Commun. 51, 31 (1984).Google Scholar
[21] Giamei, A., Anton, D. L., Met. Trans. A 16, 1985 (1997).Google Scholar
[22] Pugh, S. F., Philos. Mag. 45, 823 (1954).Google Scholar
[23] Xu, J. H., Oguchi, T. and Freeman, A. J., Phys. Rev. B 36, 4186 (1987).Google Scholar
[24] Sun, Z. M., Ahuja, R., Li, S., and Schneiderb, J. M., Appl. Phys. Lett. 83, 899 (2003).Google Scholar