Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T07:04:41.896Z Has data issue: false hasContentIssue false

Early Stages of Decomposition in Ni-Rich Ni-Ti

Published online by Cambridge University Press:  15 February 2011

M. Kompatscher
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
B. Demé
Affiliation:
Institut Laue-Langevin, F-38042 Grenoble, France
J. Hecht
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
H. Heinrich
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
J. Kohlbrecher
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
J.-M. Schneider
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
B. Schönfeld
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
G. Kostorz
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
Get access

Abstract

In-situ small-angle neutron scattering was performed on Ni-(10 to 12) at.% Ti polycrystals and single crystals at temperatures between 870 and 1270 K. During decomposition metastable precipitates of cuboidal shape form with preferred alignement along <100>. The Ti concentration of these precipitates is 17(1) at.% (between 870 and 950 K). Metastable precipitates precede the formation of platelets of the stable η phase even outside the hitherto accepted metastable miscibility gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Calderon, H.A. and Kostorz, G., in Morris E. Fine Symposium, edited by Liaw, P.K., Weertman, J.R., Marcus, H.L., and Santner, J.S. (The Minerals, Metals and Materials Society, 1991), pp. 1116.Google Scholar
2. Fährmann, M., Fratzl, P., Paris, O., Fahrnann, E., and Johnson, W.C., Acta Metall. Mater. 43, 1007 (1995).Google Scholar
3. Sequeira, A.D., Calderon, H.A., Kostorz, G., and Pedersen, J.S., Acta Metall. Mater. 43, 3427 (1995).Google Scholar
4. Cerri, A., Schönfeld, B., and Kostorz, G.: Phys, Rev. B 42, 958 (1990).Google Scholar
5. Vyskocil, P., Pedersen, J.S., Kostorz, G., and Schönfeld, B., Acta Mater. 45, 3311 (1997).Google Scholar
6. Kostorz, G., in Physical Metallurgy, 4th ed., edited by Cahn, R.W. and Haasen, P. (North-Holland, Amsterdam, 1996), pp. 11151199.Google Scholar
7. Cerri, A., Kostorz, G., Schmelczer, R., Schönfeld, B., and Schwander, P., in Phase Transformations '87, edited by Lorimer, G.W. (The Institute of Metals, London, 1988), pp. 592596.Google Scholar
8. Hashimoto, K. and Tsujimoto, T., Trans. JIM 19, 77 (1978).Google Scholar
9. Massalski, T.B. (ed.), Binary Alloy Phase Diagrams, Vol. 2 (ASM International, Materials Park, 1990).Google Scholar
10. Kostorz, G., Kompatscher, M., and Schönfeld, B., in Solid-Solid Phase Transformation '99 (Kyoto, Japan), in press.Google Scholar
11. Kompatscher, M., Schönfeld, B., Heinrich, H., and Kostorz, K., J. Appl. Cryst., to be published.Google Scholar
12. Bellen, P., Hari Kumar, K.C., and Wollants, P., Z. Metallkd. 87, 972 (1996).Google Scholar
13. Rastogi, P.K. and Ardell, A.J., Acta Metall. 17, 595 (1969).Google Scholar
14. Soffa, W.A. and Laughlin, D.E., Acta Metall. 37, 3019 (1989).Google Scholar
15. Bucher, R., Schönfeld, B., Kostorz, G., and Zolliker, M., Phys. Stat. Sol. (a) 175, 527 (1999).Google Scholar