Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T11:55:01.804Z Has data issue: false hasContentIssue false

Dynamics of Concentrated Colloidal Suspensions

Published online by Cambridge University Press:  21 February 2011

D. A. Weitz
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
L. Ye
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
Ping Sheng
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
J. S. Huang
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
D. J. Pine
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
J. Liu
Affiliation:
Exxon Research and Engineering Co, Rt. 22E, Annandale NJ 08801.
P. M. Chaikin
Affiliation:
Dept. of Physics, Princeton University, Princeton NJ 08540.
P. N. Pusey
Affiliation:
Royal Signals and Radar Establishment, Malvern Worchestershire WR14 3PS UK.
Get access

Abstract

We study the dynamics of concentrated colloidal suspensions by measuring the frequency dependent structure factor, S(q,w), using light scattering techniques. We introduce Diffusing Wave Spectroscopy, which extends dynamic light scattering to the multiple scattering regime, allowing us to study the lower frequency, diffusive modes of S(q,w), which reflect the Brownian motion of the particles. We study the behavior of the higher-frequency, propagating modes of S(q,w), which reflect acoustic waves, using Brillouin scattering. To study S(q,w) at low qa, where q is the scattering vector and a the particle diameter, we use inverted micelles, and find that the interactions between the micelles has a dramatic impact on the speed of sound as the volume fraction of micelles increases. To study S(q,w) at large qa, we use index matched PMMA particles, allowing us to measure the dispersion curve of phonons in a hard sphere colloid system. Together, these results provide a measure of S(q, w) over a wide range of q and of w.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hayter, J. B. and Penfold, J., Mol. Phys. 42, 109 (1981).Google Scholar
2 Pusey, P.N. and Tough, R.J.A. in Dynamic Light Scattering, ed. Pecora, (Plenum, New York, 1985), p. 85.Google Scholar
3 Pine, D.J., Weitz, D.A., Chaikin, P.M. and Herbolzheimer, E., Phys. Rev. Lett., 60, (1988).Google Scholar
4 Pine, D.J., Weitz, D.A., Chaikin, P.M. and Herbolzheimer, E., in Proceedings of the Topical Meeting on Photon Correlation Techniques and Applications, ed. Smart, A. and Abiss, J. (Optical Society of America, Washington, 1988).Google Scholar
5 Pine, D.J., Weitz, D.A., Maret, G., Wolf, P.E., Herbolzheimer, E. and Chaikin, P.M., in Scattering and Localization of classical Waves in Random Media, ed Sheng, Ping (World Scientific, Singapore, 1989).Google Scholar
6 Weitz, D.A., Pine, D.J., Pusey, P.N. and Tough, R.J.A., Phys. Rev. Lett. 63, 1747 (1989).Google Scholar
7 Pine, D.J., Weitz, D.A., Pusey, P.N., Tough, R.J.A. and Durian, D.J., Mat. Res. Soc. Proc., this volume.Google Scholar
8 Ye, L., Weitz, D.A., Sheng, Ping, Bhattacharya, S., Huang, J.S. and Higgins, M.J., Phys. Rev. Lett. 63, 263 (1989).Google Scholar
9 Pusey, P.N. and van Megan, W., Nature 320, 340 (1986).Google Scholar
10 Pusy, P.N. and van Megan, W., in Physics of Complex and Supermolecular Fluids, ed Safran, S.A. and Clark, N.A. (Wiley, New York, 1987), p. 6 73.Google Scholar
11 Berne, B.J. and Pecora, R., Dynamic Light Scattering (Wiley, New York, 1976).Google Scholar
12 Maret, G. and Wolf, P.E., Z. Phys. B 65, 409 (1987).Google Scholar
13 Ishimaru, A., Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory (Academic, New York, 1978).Google Scholar
14 Kotlarchyck, M., Huang, J.S. and Chen, S.-H., J. Chem. Phys. 89, 4382 (1985).Google Scholar
15 Huang, J.S., Safran, S.A., Kim, M.W., Grest, G.S., Kotlarchyk, M. and Quirke, N., Phys. Rev. Lett. 53, 592 (1984).Google Scholar
16 Huang, J.S., J. Chem. Phys. 82, 480 (1985).Google Scholar
17 Sheng, Ping, in Homogenization and Effective Modulii of Materials and Media, ed. Ericksen, J.L., Kinderlehrer, D., Kohn, R. and Lions, J.-L. (Springer-Verlag, NY, 1983), p. 196.Google Scholar
18 Hashin, Z., J. Appl. Mech. 29, 143 (1962).Google Scholar
19 Ye, L., Weitz, D.A., Sheng, Ping and Huang, J.S., Mat. Res.Soc. Proc. this volume.Google Scholar
20 Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London, 1985).Google Scholar
21 Safran, S.A., Webman, I. and Grest, G.S., Phys Rev. A32, 506 (1985).Google Scholar
22 Ye, L., Weitz, D.A., Sheng, Ping and Huang, J.S., unpublished.Google Scholar
23 Huang, J.S., Sung, J. and Wu, X-L, J. Coll. Interface Sci. 132, 34 (1989);Google Scholar
24 Kotlarchyk, M., Chen, S.H. Huang, J.S. and Kim, M.W., Phys. Rev. A24, 2054 (1984).Google Scholar
24 Huang, J.S., Safran, S.A., Kim, M.W., Grest, G.S. and Quirke, N., Phys. Rev. Lett. 53, 941 (1984); W.D. Dozier, M.W. Kim and R. Klein, J. Chem. Phys. 87, 1455 (1987).Google Scholar
25 Grest, G.S., Nagel, S.R. and Rahman, A., Phys. Rev. Lett. 49, 1271 (1982).Google Scholar
26 Cohen, E.G.D., Westerhuijs, P. and deSchepper, I.M., Phys. Rev. Lett. 59, 2872 (1987).Google Scholar