Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T01:14:41.273Z Has data issue: false hasContentIssue false

Ductility and Fracture of FeAl: Effects of Composition and Environment

Published online by Cambridge University Press:  10 February 2011

J. W. Cohront
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6093
Y. Lin
Affiliation:
Materials Engineering Program, Auburn University, Auburn, AL 36849–5351
R. H. Zee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6093
E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6093
Get access

Abstract

In ultrahigh vacuum (UHV), the ductility of FeAl decreases with increasing Al content and fracture becomes increasingly intergranular. Boron improves ductility by segregating to the grain boundaries and suppressing grain-boundary fracture. However, with increasing Al concentration, even the B-doped alloys become brittle and fracture intergranularly. Hydrogen gas at low pressures embritties FeAl, although not as severely as atmospheric moisture. Ductility is highest in UHV followed by that in O2, vacuum, and air.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, C.T., Lee, E.H. and McKamey, C.G., Scripta Metall., 23, 875, (1989).CrossRefGoogle Scholar
2. Liu, C.T. and George, E.P., Scripta Metall. Mater., 24, 1285, (1990).CrossRefGoogle Scholar
3. Liu, C.T. and George, E.P., Mater. Res. Soc. Symp. Proc., 213, 527, (1991).CrossRefGoogle Scholar
4. Liu, C.T, Fu, C.L., George, E.P. and Painter, G.S., ISIJ, 31, 1192, (1991).CrossRefGoogle Scholar
5. Gaydosh, D.J. and Nathal, M.V., Scripta Metall. Mater., 24, 1281, (1990).CrossRefGoogle Scholar
6. Gleason, N.R., Gerken, C.A. and Strongin, D.R., Appl. Surf. Sci., 72, 215, (1993).CrossRefGoogle Scholar
7. Crimp, M.A., Vendula, K.M. and Gaydosh, D.J., Mater. Res. Soc. Symp. Proc., 81, 499, (1987).CrossRefGoogle Scholar
8. Aoki, K. and Izumi, O., J. Jpn. Inst. Met., 43, 1190, (1979).CrossRefGoogle Scholar
9. Aoki, K., Mat Trans. JIM, 31, 443, (1990).CrossRefGoogle Scholar
10. Liu, C.T., Ordered Intermetallics - Physical Metallurgy and Mechanical Properties, ed. C.T. Liu et al., printed in the Netherlands, 321, (1992).CrossRefGoogle Scholar
11. Liu, C.T., Scripta Metall., 25, 1231, (1991).CrossRefGoogle Scholar
12. Liu, C.T., White, C.L. and Horton, J.A., Acta Metall., 33, 213, (1985).CrossRefGoogle Scholar
13. Crimp, M.A. and Vedula, K.M., Mater. Sci. Eng., 78, 193, (1986).CrossRefGoogle Scholar
14. Cohron, J.W., George, E.P., Heatherly, L., Liu, C.T. and Zee, R.H., Acta Mater., 45, 2801, (1997).CrossRefGoogle Scholar
15. George, E.P., Liu, C.T., and Pope, D.P., Acta Mater., 44, 1757, (1996).CrossRefGoogle Scholar
16. George, E.P., Liu, C.T., and Pope, D.P., Scripta Metall. Mater., 30, 37, (1994).CrossRefGoogle Scholar
17. Nagpal, P. and Baker, I., Metall. Trans., 21 A, 2281, (1990).CrossRefGoogle Scholar
18. Cohron, J.W., Lin, Y, Zee, R.H., and George, E.P., Acta Mater., in press.Google Scholar
19. Cohron, J.W., George, E. P., Heatherly, L., Liu, C. T., and Zee, R. H., Intermetallics, 4, 497, (1996).CrossRefGoogle Scholar
20. Baker, I., Klein, O., Nelson, C. and George, E.P., Scripta Metall. Mater., 30, 863, (1994).CrossRefGoogle Scholar
21. Nagpal, P. and Baker, I., Scripta Metall. Mater., 25, 2577, (1991).CrossRefGoogle Scholar
22. Carleton, R., George, E.P. and Zee, R.H., Intermetallics, 3, 433, (1995).CrossRefGoogle Scholar