Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T04:22:48.537Z Has data issue: false hasContentIssue false

Dry Etching of SiC for Advanced Device Applications

Published online by Cambridge University Press:  10 February 2011

J. R. Flemish
Affiliation:
Army Research Laboratory, Physical Sciences Directorate, Fort Monmouth, NJ 07703
K. Xie
Affiliation:
Army Research Laboratory, Physical Sciences Directorate, Fort Monmouth, NJ 07703
G. F. Mclane
Affiliation:
Army Research Laboratory, Physical Sciences Directorate, Fort Monmouth, NJ 07703
Get access

Abstract

In this paper we review and compare most of the published results on dry etching of silicon carbide using various techniques. The vast majority of reports have used RIE methods due to the wide availability of such reactors. Recently, alternative methods of magnetron enhanced RIE (MIE) and electron cyclotron resonance (ECR) plasmas have been demonstrated. MIE has resulted in extremely high etch rates and ECR etching has resulted in smooth, residue-free surfaces with an ability to control the etched profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Palmour, J. W., Carter, C. H. Jr.,, Weitzel, C. E., and Nordquist, K. J., Mat. Res. Soc. Symp. Proc. 339, 133 (1994).Google Scholar
2. Ghezzo, M., personal communications.Google Scholar
3. Steckl, A. J. and Yih, P. H., Appl. Phys. Lett. 60, 1966 (1992).Google Scholar
4. Yih, P. H. and Steckl, A. J., J. Electrochem. Soc. 140, 1813 (1993).Google Scholar
5. Yih, P. H. and Steckl, A. J., J. Electrochem. Soc. 142, 312 (1995).Google Scholar
6. Lehmann, H. W., in Thin Film Processes II, eds. Vossen, J. L. and Kern, W. (Academic, San Diego, 1991) p. 673.Google Scholar
7. Asmussen, J., J. Vac. Sci. Technol. A 7 (3), 883 (1989).Google Scholar
8. Ventzek, P. L. G., Sommerer, T. J., Hoekstra, R. J., and Kushner, M. J., Appl. Phys. Lett. 63, 605 (1993).S. K. Krongelb, IBM Tch. Discl. Bull. 23 (2), 828 (1980).Google Scholar
9. Krongelb, S. K., IBM Tch. Discl. Bull. 23 (2), 828 (1980).Google Scholar
10. Chang, C. Y., Fang, Y. K., Huang, C. F., and Wu, B. S., J. Electrochem. Soc. 132 (2), 418 (1985).Google Scholar
11. Dohmae, S., Shibahara, K., Nishino, S. and Matsunami, H., Jap. J. Appl. Phys. 24, L873 (1985).Google Scholar
12. Kelner, G., Binari, S. C., and Klein, P. H., J. Electrochem. Soc. 134 (1), 253 (1987).Google Scholar
13. Palmour, J. W., Davis, R. F., Wallett, T. M., and Bhasin, K. B., “Dry etching of beta SiC in CF4 and CF4 + O2 mixtures,” J. Vac. Sci. Technol. A 4, 590 (1986).Google Scholar
14. Luther, B. P., Ruzyllo, J., and Miller, D. L., Appl. Phys. Lett. 63, 171 (1993).Google Scholar
15. Pan, W. S. and Steckl, A. J., J. Electrochem. Soc. 137 (1) 212 (1990).Google Scholar
16. Padiyath, R., Wright, R. L., Chaudhry, M. I., and Babu, S. V., Appl. Phys. Lett. 58, 1053 (1991).Google Scholar
17. Wu, J., Parsons, J. D. and Evans, D.R., J. Electrochem. Soc. 142 (2), 669 (1995).Google Scholar
18. McLane, G. F. and Flemish, J. R., unpublished.Google Scholar
19. Flemish, J. R., Xie, K., and Zhao, J. H., Appl. Phys. Lett. 64, 2315 (1994).Google Scholar
20. Flemish, J. R., Xie, K., Buchwald, W., Casas, L., Zhao, J. H., McLane, G., and Dubey, M., Mat. Res. Soc. Symp. Proc. 339, 145 (1994).Google Scholar
21. Xie, K., Flemish, J. R., Zhao, J. H., Buchwald, W. R. and Casas, L., Appl. Phys. Lett. 67, 386 (1995).Google Scholar
22. Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).Google Scholar
23. Flemish, J. R., in Wide Bandgap Semiconductors and Devices, ed. Ren, F. (Electrochemical Society, Pennington NJ, 1995) Vol 95–21, 231.Google Scholar
24. Melliar-Smith, C. M. and Mogab, C. J., in Thin Film Processes, ed. by Vossen, J. L. and Kern, W. (Academic, San Diego, 1978) p. 540.Google Scholar