Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:56:03.063Z Has data issue: false hasContentIssue false

DNA i-motif provides steel-like tough ends to chromosomes

Published online by Cambridge University Press:  11 March 2014

Raghvendra P. Singh
Affiliation:
Institut d’Electronique Microelectronique et Nanotechnologie (IEMN Cnrs - UMR 8520), University of Lille I Sciences and Technology, 59652 Villeneuve d’Ascq, France Interdisciplinary Research Institute (IRI Cnrs - USR 3078), University of Lille I Sciences and Technology, 59655 Villeneuve d’Ascq, France
Ralf Blossey
Affiliation:
Interdisciplinary Research Institute (IRI Cnrs - USR 3078), University of Lille I Sciences and Technology, 59655 Villeneuve d’Ascq, France
Fabrizio Cleri
Affiliation:
Institut d’Electronique Microelectronique et Nanotechnologie (IEMN Cnrs - UMR 8520), University of Lille I Sciences and Technology, 59652 Villeneuve d’Ascq, France
Get access

Abstract

We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from NMR crystallographic data, fully relaxed and equilibrated in water. The unusual C●C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, i-motif nanowires share similarities with structural proteins, as far as their tensile stiffness, but are closer to nucleic acids and flexible proteins, as far as their bending rigidity is concerned. Curiously enough, their tensile strength makes such DNA fragments tough as mild steel or a nickel alloy. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Leroy, J. L., Gueron, M., Mergny, J. L. and Helene, C., Nucl. Acids Res. 22 (1994) 1600 CrossRefGoogle Scholar
Nonin, S. and Leroy, J. L., J. Mol. Biol. 261 (1996) 399 CrossRefGoogle Scholar
Phan, A. T. and Leroy, J. L., J. Biomol. Struct. Dyn. 17 (2000) 245 CrossRefGoogle Scholar
Jin, K. S., Shin, S. R., Ahn, B., Rho, Y., Kim, S. J. and Ree, M., J. Phys. Chem. B 113 (2009) 1852 CrossRefGoogle Scholar
Choi, J., Kim, S., Tachikawa, T., Fujitsuka, M. and Majima, T., J. Am. Chem. Soc. 133 (2011) 16146 CrossRefGoogle Scholar
Smiatek, J., Chen, C., Liu, D. and Heuer, A., J. Phys. Chem. B 115 (2011) 13788 CrossRefGoogle Scholar
Wang, Y., Li, X., Liu, X. and Li, T., Chem. Commun. (Cambr) 42 (2007) 4369 CrossRefGoogle Scholar
Peng, Y., Wang, X., Xiao, Y., Feng, L., Zhao, C. and Ren, J., J. Am. Chem. Soc. 131 (2009) 13813 CrossRefGoogle Scholar
Ren, X., He, F. and Xu, Q. H., Chem. Asian. J. 5 (2010) 1094 CrossRefGoogle Scholar
Wang, C., Du, Y., Wu, Q., Xuan, S., Zhou, J. and Song, J., Chem. Commun. (Cambr) 49 (2013) 5739 CrossRefGoogle Scholar
Fink, H. W. and Schonenberger, C., Nature 398 (1999) 407 CrossRefGoogle Scholar
Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. and LaBean, T. H., Science 301 (2003) 1882 CrossRefGoogle Scholar
Singh, R. P., Blossey, R. and Cleri, F., Biophys. J. 105 (2013)CrossRefGoogle Scholar
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. and Gaub, H. E., Science 276 (1997) 1109 CrossRefGoogle Scholar
Isralewitz, B., Gao, M. and Schulten, K., Curr. Opin. Struct. Biol. 11 (2001) 224 CrossRefGoogle Scholar
Phillips, J. C. et al. ., J. Comput. Chem. 26 (2005) 1781 CrossRefGoogle Scholar
Kastner, J., J. Chem. Phys. 131 (2009) 034109 CrossRefGoogle Scholar
Smith, S. B., Cui, Y. and Bustamante, C., Science 271 (1996) 795 CrossRefGoogle Scholar
Gere, J. M. and Timoshenko, S. P., Mechanics of materials, Nelson Th., Cheltenham, UK, 1999.Google Scholar
Guo, K. et al. ., J. Am. Chem. Soc. 129 (2007) 10220 CrossRefGoogle Scholar
Khan, N., Avin, A., Tauler, R., Gonzalez, C., Eritja, R. and Gargallo, R., Biochimie 89 (2007) 1562 CrossRefGoogle Scholar
Sun, D. and Hurley, L. H., J. Med. Chem. 52 (2009) 2863 CrossRefGoogle Scholar
Jeanclos, E. et al. ., Hypertension 36 (2000) 195 CrossRefGoogle Scholar
Wang, Y. Y., Wang, H. Z., Xie, L. Y., Sui, K. X. and Zhang, Q.-Y., The Aging Male 14 (2010) 27 CrossRefGoogle Scholar
Hoffmann, J. and Spyridopoulos, I., Future Cardiology 7 (2011) 789 CrossRefGoogle Scholar