Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-26T14:49:36.869Z Has data issue: false hasContentIssue false

Dlts Study of Oxide Traps Near the Si-SiO2 Interface

Published online by Cambridge University Press:  26 February 2011

D. Vuillaume
Affiliation:
Laboratoire de Physique des Solides, LA 253, CNRS, ISEN 41,Bd Vauban, 59046 LILLE Cedex, FRANCE
J. C. Bourgoin
Affiliation:
Groupe de Physique des Solides de l'ENS, LA 17, CNRS, Université Paris VII, Tour 23, 2 place Jussieu, 75221 PARIS Cedex 05, FRANCE
Get access

Abstract

We have used the DLTS (Deep Level Transient Spectroscopy) technique to characterize the traps of the oxide layer near the Si-SiO2 interface. Using the so-called saturating pulse DLTS, no saturation is observed when all the fast interface states are filled. This unusual behavior is interpreted by taking into account tunneling emission from oxide traps situated near the Si-SiO2 interface. We show how the deconvolution between interface states and oxide traps is allowed by introducing a model of tunneling emission from oxide traps into Si substrate, for the derivation of the DLTS response. By this way a depth localisation of these oxide traps is obtained : about 10 to 30 Å from the interface. The experimental study of the filling kinetics allows the determination of the concentration of these oxide traps (≈ 107 to 108 cm-2) and their associated tunneling capture cross-section (≈ 10-22 to 10-21 cm2). The validity of the model and measurements is rapidly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
2. Wang, K.L., J. Appl. Phys. 47, 4574 (1976).Google Scholar
3. Schultz, M. and Johnson, N.M., Appl. Phys. Lett. 31, 622 (1977) ; Solid State Comm. 25, 481 (1978)Google Scholar
4. Kamieniecki, E., Kazior, T.E., Lagowski, J. and Gatos, H.C., Ve, J.. Sci. Technol. 17, 1041 (1980).Google Scholar
5. Vuillaume, D. and Bourgoin, J.C., J. Appl. Phys. 58, 2077 (1985).Google Scholar
6. Heiman, F.P. and Varfield, G., IEEE Trans. Electron. Devices ED.12, 167 (1965).Google Scholar
7. Preir, H., Appl. Phys. Lett. 10, 361 (1967).Google Scholar
8. Blosse, A. and Bourgoin, J.C., Appl. Phys. A34, 1 (1984).Google Scholar
9. Messiah, A., Mécanique quantique I, 2nd ed. (Dunod, Paris, 1965),p.200.Google Scholar
10. Vuillaume, D., Bourgoin, J.C. and Lannoo, M., Phys. Rev. B (to be published).Google Scholar
11. Nicollian, E.H. and Brews, J.R., in MOS Physics and technology, 1st ed. (Wiley, New York, 1982), p. 815.Google Scholar
12. Balland, B. and Pinard, P., Phys. Stat. Sol. (a) 47, 251 (1978).Google Scholar
13. Khan, A.A., Woollam, J.A. and Chung, Y., J. Appl. Phys. 55, 4299 (1984).Google Scholar
14. Dimaria, D.J., in The Physics of Sio2 and its interfaces, edited by Pantelides, S.T. (Pergamon, New York, 1978), p. 160.Google Scholar
15. Prasad, S.J. and Owen, S.J.T., presented at the Symposium on dielectric films on compound semiconductors, Electrochemical society Meeting, Las Vegas, 1985 (unpublieshed), and others references therein.Google Scholar