Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T17:40:00.844Z Has data issue: false hasContentIssue false

Disilane Adsorption on Ge(111): A Multiple Internal Reflection Infrared Spectroscopy Study

Published online by Cambridge University Press:  28 February 2011

John E. Crowell
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0314
Guangquan Lu
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0314
Get access

Abstract

The adsorption and decomposition of disilane on the Ge(111) surface has been investigated using multiple internal reflection infrared spectroscopy (MIRIRS). At temperatures ≤ 110 K, Si2H6 weakly bonds to the Ge surface in a molecular fashion. Upon mild heating to temperatures between 110 - 150 K, both desorption and dissociation occur. Dissociative adsorption also occurs upon exposure at temperatures > 110 K. Molecular adsorption is no longer observed for exposure at temperatures above 150 K. Detection of the low frequency deformation modes provides direct evidence for dissociation of the Si-Si bond between 120 - 150 K. The primary species present at 150 K is silyl, SiH3. Si-H bond scission takes place from 150 - 500 K, resulting in GeH formation. Production of SiH2 and SiH is spectroscopically identified in this temperature range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
2. Meyerson, B.S., Uram, K.J. and LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
3. Fischer, S.E., Cook, R.K., Knepper, R.W., Lange, R.C., Nummy, K., Ahlgren, D.C., Revitz, M. and Meyerson, B.S., IEEE IEDM Tech. Dig. 890 (Dec. 1989).Google Scholar
4. Bean, J.C., Mater. Res. Soc. Proc. 116, 479 (1988).Google Scholar
5. Gates, S.M., Surface Sci. 195, 307 (1988).10.1016/0039-6028(88)90798-4Google Scholar
6. Becker, R.S., Swartzentruber, B.S., Vickers, J.S., and Klitsner, T., Phys. Rev. B 39, 1633 (1989).Google Scholar
7. Bringans, R.D., Uhrberg, R.I.G., Bachrach, R.Z., and Northrup, J.E., J. Vac. Sci. Technol. A 4, 1380 (1986).Google Scholar
8. Bringans, R.D., Uhrberg, R.I.G., and Bachrach, R.Z., Phys. Rev. B 34, 2373 (1986).Google Scholar
9. Feidenhans'l, R., Pedersen, J.S., Bohr, J., Nielsen, M., Grey, F., and Johnson, R.L., Phys. Rev. B 38, 9715 (1988).Google Scholar
10. Imbihl, R., Demuth, J.E., Gates, S.M. and Scott, B.A., Phys. Rev. B 39, 5222 (1989).Google Scholar
11. Uram, K.J. and Jansson, U., J. Vac. Sci. Technol. B 7, 1176 (1989); K.J. Uram and U. Jansson, [to be published].Google Scholar
12. Jansson, U. and Uram, K.J., J. Chem. Phys. 91, 7978 (1989).Google Scholar
13. Avouris, Ph. and Bozsb, F., J. Phys. Chem. 94, 2243 (1990).Google Scholar
14.Harrick Scientific Corp., Ossining, NY.Google Scholar
15. Durig, J. and Church, J.S., J. Chem. Phys. 73, 4784 (1980).Google Scholar
16. Lu, G.Q. and Crowell, J.E., submitted.Google Scholar
17.H atom exposure was achieved by dissociating H2 near the Ge surface using a hot tungsten spiral filament.Google Scholar
18. Chabal, Y.J., Surface Sci. 168, 594 (1986).Google Scholar
19. Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett. 53, 282 (1984); 54, 1055 (1985)Google Scholar
20. Burrows, V.A., Chabal, Y.J., Higashi, G.S., K. Raghavachari and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
21. Lu, G.Q. and Crowell, J.E., [to be published].Google Scholar
22. Lu, G.Q. and Crowell, J.E., [to be published].Google Scholar