Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:17:29.329Z Has data issue: false hasContentIssue false

The Diffusivity and Solubility of Oxygen in Silicon

Published online by Cambridge University Press:  28 February 2011

J. C. Mikkelsen Jr.*
Affiliation:
Xerox Research, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The diffusivity and solubility are two key parameters required for understanding and modeling the behavior of oxygen in silicon. This paper gives an up to date review of experimental determinations of these parameters, including some recent unpublished data. There is very good agreement within the long-range diffusivity results determined by secondary ion mass spectrometry (SIMS), charged particle analysis (CPA), and x-ray diffraction. The oxygen diffusivity is independent of [O], orientation, ambient, or crystal doping. The data also extrapolate well to the diffusivities obtained by the intrinsic oxygen atomic hop frequency at low temperature to give a combined expression of D = 0.13 exp(−2.53eV/kT) cm2s−1. There is somewhat poorer agreement on the solubility measurements, in part due to inconsistent calibration factors and the observation of a processing-dependent extrinsic oxygen solubility. The intrinsic solubility derived from SIMS, CPA, and infrared absorption is described by [O] = 9E22 exp (−1.52 eV/kT) cm−3. Finally, the above diffusivity and solubility parameters are compared to modeling of oxygen related phenomena in silicon, such as thermal donor and precipitate formation kinetics, and interaction with point defects during the relaxation of stress-aligned dichroism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1). Patel, J. R., in Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 189.Google Scholar
(2). Mikkelsen, J. C. Jr., J. Metals 37, 51 (1985).Google Scholar
(3). Mikkelsen, J. C. Jr., Appl. Phys. Lett. 40, 336 (1982).CrossRefGoogle Scholar
(4). Mikkelsen, J. C. Jr., Appl. Phys. Lett. 41,871 (1982).Google Scholar
(5). Heck, D., Tressler, R. E., and Monkowski, J., J. Appl. Phys. 54, 5739 (1983).Google Scholar
(6). Lee, S. -T. and Nichols, D., Appl. Phys. Lett. 47, 1001 (1985), and these Proceedings.Google Scholar
(7). Bleiler, R. J., Hockett, R. S., Chu, P., and Strathman, E., these Proceedings.Google Scholar
(8). Gass, J., Muller, H. H., Stussi, H., and Schweitzer, S., J. Appl. Phys. 51, 2030 (1980).Google Scholar
(9). Itoh, Y. and Nozaki, T., Jap. J. Appl. Phys. 24, 279 (1985).Google Scholar
(10). Hrostowski, H. and Kaiser, R. H., J. Phys. Chem. Solids 9, 214 (1959).Google Scholar
(11). Bean, A. R. and Newman, R. C., J. Phys. Chem. Solids 32, 1211 (1971).Google Scholar
(12). Newman, R. C., Infrared Studies of Crystal Defects, (Taylor and Francis, London, 1973).Google Scholar
(13). Stavola, M., Appl. Phys. Lett. 44, 514 (1984).Google Scholar
(14). C. A. Evans and Associates, San Mateo, CA.Google Scholar
(15). lizuki, T., Takasu, S., Tajima, M., Arai, T., Nozaki, T., Inoue, N., and Watanabe, M., J. Electrochem. Soc. 132, 1701 (1985).Google Scholar
(16). Chu, P., Hockett, R. S., and Wilson, R. G., these Proceedings.Google Scholar
(17). Corbett, J. W., McDonald, R. S., and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964).Google Scholar
(18). Stavola, M., Patel, J. R., Kimerling, L. C., and Freeland, P. E., Appl. Phys. Lett. 42, 73(1983).CrossRefGoogle Scholar
(19). Newman, R. C., Oates, A. S., and Livingston, F. M., J. Phys. C: Solid State Phys. 16, L667 (1983).Google Scholar
(20). Oates, A. S., Binns, M. J., Newman, R. C., Tucker, J. H., Wilkes, J. G., and Wilkinson, A., J. Phys. C: Solid State 17, 5685 (1984).Google Scholar
(21). Newman, R. C., Tipping, A. K., and Tucker, J. H., J. Phys. C: Solid State Phys. 18, L861 (1985).CrossRefGoogle Scholar
(22). Takano, Y. and Maki, M., in Semiconductor Silicon 1973, ed. by Huff, H. R. and Burgess, R. R. (Electrochemical Society, Pennington, 1973), p. 469.Google Scholar
(23). Hu, S. M., J. Appl. Phys. 52, 3974 (1981).Google Scholar
(24). Gaworzewski, P. and Ritter, G., Phys. Stat. Sol. 67, 511 (1981).CrossRefGoogle Scholar
(25). Isomae, S., Aoki, S., and Watanabe, K., J. Appl. Phys. 55,8117 (1984).CrossRefGoogle Scholar
(26). Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112, 1546(1958).CrossRefGoogle Scholar
(27). Hahn, S., these Proceedings.Google Scholar
(28). Grove, A. S., Physics and Technology of Semiconductor Devices, (John Wiley and Sons, New York,1967).Google Scholar
(29). Hansen, W. L., Pearton, S. J., and Hailer, E. E., Appl. Phys. Lett. 44, 889 (1984).Google Scholar
(30). Livingston, F. M., Messoloras, S., Newman, R. C., Pike, B. C., Stewart, R. J., Binns, M. J., Brown, W. P., and Wilkes, J. G., J. Phys. C: Solid State Phys. 17 6253 (1984).Google Scholar
(31). Lavine, J. P., Hawkins, G. A., Anagnostopoulos, C. N., and Rivaud, L., these Proceedings.Google Scholar
(32). Newman, R. C., these Proceedings.Google Scholar