Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T06:08:31.967Z Has data issue: false hasContentIssue false

The Dielectric Response Of 8-Hydroxyquinoline Aluminum used in Multilayer Organic Devices

Published online by Cambridge University Press:  10 February 2011

A. Niko
Affiliation:
Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, A8010 Graz, Austria
C. Hochfilzer
Affiliation:
Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, A8010 Graz, Austria
T. Jost
Affiliation:
Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, A8010 Graz, Austria
W. Graupner
Affiliation:
Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, A8010 Graz, Austria
G. Leising
Affiliation:
Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, A8010 Graz, Austria
Get access

Abstract

We present optical measurements of 8-hydroxyquinoline aluminum (Alq3) a metal-chelate complex which is an important material used for multilayer light emitting diodes. Thin films of Alq3 produced by vacuum deposition were investigated by transmission and reflectance spectroscopy, and the dielectric coefficients in the near IR to UV-Vis energy range were calculated. Kramers-Kronig analysis was used to determine the real and imaginary dielectric spectral dependence of the thin films. Values obtained by internal field distribution measurements in organic double layer LED's are compared to those determined from optical data. A near-IR value of epsilon (real component) close to 3 was obtained from optical measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W., VanSlyke, S. A., Appl. Phys. Lett. 51, p. 1221 (1987).Google Scholar
2. Jordan, R. H., Dodabalapur, H., Strukelj, M., Miller, T. M., Appl. Phys. Lett. 68, p. 1192 (1996).Google Scholar
3. Scherf, U., Müllen, K., Makromol. Chem., Rapid Commun. 12, p. 489 (1991).Google Scholar
4. Hochfilzer, C., Jost, T., Niko, A., Graupner, W., Leising, G., Tang, C. W., Forsythe, E., Gao, Y., MRS Fall meeting 1997: this Proceedings.Google Scholar
5. Tasch, S., Niko, A., Leising, G., Scherf, U., Appl. Phys. Lett. 68, p. 1090 (1996).Google Scholar
6. Niko, A., Resel, R., Meghdadi, F., Turcu, R., Pruneanu, S., Leising, G., Synth.Met. 84, p. 955 (1997).Google Scholar
7. Born, E., Wolf, Fundamentals of optics, Pergamon press, Oxford (1988).Google Scholar
8. Hochfilzer, C., Leising, G., Gao, Y., Forsythe, E., Tang, C. W., Appl. Phys. Lett. (submitted).Google Scholar
9. Jost, T., Diploma thesis, TU Graz 1997.Google Scholar
10. Sturm, J., Tasch, S., Niko, A., Leising, G., Toussaere, E., Zyss, J., Kowalszyk, T.C., Singer, K.D., Scherf, U., Huber, J., Thin Solid Films (1997).Google Scholar