Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:07:17.179Z Has data issue: false hasContentIssue false

Dielectric GlueWafer Bonding For 3D ICs

Published online by Cambridge University Press:  01 February 2011

Y. Kwon
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
A. Jinda
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
J.J. McMahon
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
J.Q. Lu
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
R.J. Gutmann
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
T.S. Cale
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

A process to bond 200 mm wafers for wafer-level three-dimensional integrated circuit (3D-IC) applications is discussed. Four-point bending is used to quantify the bonding strength and identify the weak interface. Using benzocylcobutene (BCB) glue, the bonding strength depends on (1) glue thickness, (2) glue film preparation, and (3) materials and structures on the wafer(s). A seamless BCB-to-BCB bond interface provides the highest bonding strength compared to other interfaces in these structures (> 34 J/m2). Mechanical and electrical properties of a wafer with copper interconnect structures are preserved after wafer bonding and wafer thinning, confirming the potential of the bonding process for 3D ICs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, J.A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S.J., Banerjee, K., Saraswat, K.C., Rahman, A., Reif, R., and Meindl, J.D., Proc. IEEE 89(3), 305 (2001).Google Scholar
2. Lu, J.Q., Lee, K.W., Kwon, Y., Rajagopalan, G., McMahon, J., Altemus, B., Gupta, M., Eisenbraun, E., Xu, B., Jindal, A., Kraft, R.P., McDonald, J.F., Castracane, J., Cale, T.S., Kaloyeros, A.E., and Gutmann, R.J., in Advanced Metallization Conference (AMC) 2002, MRS, 2002, pp. 4551.Google Scholar
3. Guarini, K.W., Topol, A.W., Ieong, M., Yu, R., Shi, L., Newport, M.R., Frank, D.J., Singh, D.V., Cohen, G.M., Nitta, S.V., Boyd, D.C., O'Neil, P.A., Tempest, S.L., Pogge, H.B., Purushothaman, S., and Haensch, W.E., in Digest of International Electron Device Meeting (IEDM) 2002, 943 (2002).Google Scholar
4. Kwon, Y., Lu, J.Q., Kraft, R.P., McDonald, J.F., Gutmann, R.J. and Cale, T.S., in MRS Symp. Proc. Vol. 710, DD12.18.1 (2002).Google Scholar
5. Ma, Q., J. Mat. Res. 12(3), 840 (1997).Google Scholar
6. Charalambides, P.G., Lund, J., Evans, A.G., and McMeeking, R.M., J. Appl. Mech. 111, 77 (1989).Google Scholar
7. Jindal, A., Lu, J.Q., Kwon, Y., Rajagopalan, G., McMahon, J.J., Zeng, A.Y., Flesher, H.K., Cale, T.S., and Gutmann, R.J., in Symposium Proceedings of Material Research Society Spring Conference, San Francisco, CA, April 21-25, 2003, in press.Google Scholar
8. Dauskardt, R.H., Lane, M., Ma, Q., and Krishna, N., Eng. Fract. Mech. 61, 141 (1998).Google Scholar
9. Lu, J.Q., Jindal, A., Kwon, Y., McMahon, J.J., Rasco, M., Augur, R., Cale, T.S., and Gutmann, R.J., in Proceedings of 2003 IEEE International Interconnect Technology Conference (IITC 2003), June 2003, pp. 7476.Google Scholar