Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-27T22:47:46.975Z Has data issue: false hasContentIssue false

Development of Thick-Film Thermoelectric Microcoolers Using Electrochemical Deposition

Published online by Cambridge University Press:  10 February 2011

J.-P. Fleurial
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
A. Borshchevsky
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
M. A. Ryan
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
W. M. Phillips
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
J. G. Snyder
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
T. Caillat
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
E. A. Kolawa
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
J. A. Herman
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109, jean-pierre.fleurial@jpl.nasa.gov
P. Mueller
Affiliation:
Electrical Engineering Department, California Institute of Technology, Pasadena, CA.
M. Nicolet
Affiliation:
Electrical Engineering Department, California Institute of Technology, Pasadena, CA.
Get access

Abstract

Advanced thermoelectric microdevices integrated into thermal management packages and low power, electrical source systems are of interest for a variety of space and terrestrial applications. By shrinking the size of the thermoelements, or legs, of these devices, it becomes possible to handle much higher heat fluxes, as well as operate at much lower currents and higher voltages that are more compatible with electronic components. The miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints for both leg dimensions (100–200 μm thick minimum) and the number of legs (100–200 legs maximum). We are investigating the development of novel microdevices combining high thermal conductivity substrate materials such as diamond, thin film metallization and patterning technology, and electrochemical deposition of thick thermoelectric films. It is anticipated that thermoelectric microcoolers with thousands of thermocouples and capable of pumping more than 200 W/cm2 over a 30 to 60 K temperature diffrence can be fabricated. In this paper, we report on our progress in developing an electrochemical deposition process for obtaining 10–50 μm thick films of Bi2Te3 and its solid solutions. Results presented here indicate that good quality n-type Bi2Te3, n-type Bi2Te2.95Se0.05 and p-type Bi0.5Sb1.5Te3 thick films can be deposited by this technique. Some details about the fabrication of the miniature thermoelements are also described.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DARPA Workshop on Microelectronic Thermal Management, Proceedings, December 1997.Google Scholar
2. Mok, L. S., Proc. Tenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, New York, IEEE, 5963 (1994).Google Scholar
3. Capasso, F., Faist, J., Sirtori, C. and Cho, A.Y., Solid State Communications, 102, 231 (1997).CrossRefGoogle Scholar
4. Fleurial, J.-P., Borshchevsky, A., Ryan, M.A., Phillips, W., Kolawa, E., Kacisch, T. and Ewell, R., Proc. XVI Int. Conf. Thermoelectrics, Dresden, Germany, August 26–29, IEEE Catalog No. 97TH 8291, 641 (1997).Google Scholar
5. North, M.T., Sarraf, D.B., Rosenfeld, J.H., Maidanik, Y.F. and Vershinin, S., Proc. Space Technology and Applications International Forum, AIP 387, 2, 561566 (1997).Google Scholar
6. Sherman, M.M. and Campbell, G.O., Proc. Spacecraft Thermal Control Symposium, Albuquerque, Nov. 1994Google Scholar
7. Isothermal Systems Research Inc.(private communication).Google Scholar
8. Semeniouk, V. A., Pilipenko, T. V., Albright, G. C., Joffe, L. A., Rolls, W. H., Proc. XIIIth Int. Conf. on Thermoelectrics, Kansas City MO, USA, 1994, AIP Conf. Proc. 316, 150 (1995).Google Scholar
9. Rushing, L., Shakouri, A., Abraham, P. and Bowers, J., Proc. XVI Int. Conf. Thermoelectrics, Dresden, Germany, August 26–29, IEEE Catalog No. 97TH8291, 646 (1997).Google Scholar
10. Kishi, M., Yoshida, Y., Okano, H., Nemoto, H., Funanami, Y., Yamamoto, Y. and Kanazawa, H., Proc. XVI Int. Conf. Thermoelectrics, Dresden, Germany, August 26–29, IEEE Catalog No. 97TH8291, 653 (1997).Google Scholar
11. Semeniouk, V.A. and Fleurial, J.-P., Proc. XVI Int. Conf. Thermoelectrics, Dresden, Germany, August 26–29, IEEE Catalog No. 97TH8291, 683 (1997).Google Scholar
12. Boikov, Yu. A., Gribanova, O.S., Danilov, V.A., Kutasov, V.A., Sov. Phys. Solid State 32 (12), 2056 (1990).Google Scholar
13. Despic, A.R. and Jovic, V.D. in Modem Aspects of Electrochemistry, No. 27, edited by White, R.E., Bockris, J.O' M. and Conway, B.E., (Plenum Press, New York, 1995), p. 143.Google Scholar
14. Rajeshwar, K., Adv. Mater., 4, 23 (1992) and references therein.Google Scholar
15. Mirovsky, Y., Tenne, R., Hodes, G. and Cahen, D., Thin Solid Films, 91, 49 (1982).Google Scholar
16. Takahashi, M., Katou, Y., Nagata, K. and Furuta, S., Thin Solid Films, 240 (1–2), 70 (1994).Google Scholar
17. Magri, P., Boulanger, C. and Lecuire, J.M., J. Mater. Chem., 6 (5) 773779 (1996).Google Scholar
18. Anatychuk, L.I. and Luste, O.J., Proc. XV Int. Conf. Thermoelectrics, Pasadena, USA, March 26–29, IEEE Catalog No. 96TH8169, 279 (1996).Google Scholar
19. Kolawa, E., Chen, J.S., Reid, J.S., Pokela, P.J., Nicolet, M-A., J. Appl. Phys. 70, 1369 (1991).CrossRefGoogle Scholar
20. Kacsich, T., Kolawa, E., Fleurial, J.-P., Caillat, T. and Nicolet, M.-A., J. Phys. D, 31, 1 (1998).CrossRefGoogle Scholar