Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T06:50:44.474Z Has data issue: false hasContentIssue false

Development of new ceramic doped ionoconducting membranes for biomedical applications.

Published online by Cambridge University Press:  11 February 2011

Paola Romagnoli
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, and Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133 Rome, (Italy)
Maria Luisa Di Vona
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, and Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133 Rome, (Italy)
Enrico Traversa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, and Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133 Rome, (Italy)
Livio Narici
Affiliation:
Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, (Italy)
Walter G. Sannita
Affiliation:
Centro Farmaci Neuroattivi-Dipartimento di Scienze Motorie, Universita' di Genova, Largo Benzi 10, 16132 Genova, Italy and Department of Psychiatry, State University of New York, Stony Brook, NY, 1764–8101, USA.
Simone Carozzo
Affiliation:
Centro Farmaci Neuroattivi-Dipartimento di Scienze Motorie, Universita' di Genova, Largo Benzi 10, 16132 Genova, Italy and Department of Psychiatry, State University of New York, Stony Brook, NY, 1764–8101, USA.
Marcella Trombetta
Affiliation:
Interdisciplinary Center for Biomedical Research (CIR), Laboratory of Biomaterials, Università “Campus Bio-Medico”, via E. Longoni 83, 00155 Rome, (Italy)
Silvia Licoccia
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, and Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133 Rome, (Italy)
Get access

Abstract

New ionoconducting composite membranes to be used as an interface between the skin and the actual electrical instrumentation used to produce an electroencephalogram (EEG) have been developed. The gels are based on lithium salts and PMMA (polymethyl methacrylate) and have been doped with nanometric titanium oxide. The samples have been electrochemically characterized by means of impedance spectroscopy and their structure studied by ATR-FTIR and MAS NMR. Spectroscopic studies indicate interactions between the polymer and oxide dopant. The polymeric electrolytes allowed the registration of good electrophysiological cortical signals either spontaneous or stimulus-related.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “Orthopedic Composites”, Lee, Stuart M., Editor. International Encyclopedia of Composites. VCH Publishers, New York, 1991. Vol 4, pp. 7487 Google Scholar
2. Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K. W., Comp. Science and Tech. 61, 1189 (2001).Google Scholar
3. Romagnoli, P., Di Vona, M.L., Narici, L., Sannita, W.G., Traversa, E. and Licoccia, S., J. Electrochem. Soc., 148(12), J63 (2001).Google Scholar
4. Rajendran, S., Uma, T., Materials Letters 45, 191 (2000).Google Scholar
5. Carotta, M.C., Butturi, M.A., Martinelli, G., Di Vona, M.L., Licoccia, S., Traversa, E., Electron Technology 33, 113 (2000).Google Scholar
6. Kumar, B., Schaffer, J.D., Munichandraiah, N, Scanlon, L.G. J. Power Sources 47, 63 (1994).Google Scholar
7. Appetecchi, G.B., Romagnoli, P., Scrosati, B., Electrochem. Comm. 3, 281 (2001).Google Scholar
8. Scrosati, B., Croce, F. and Persi, L., J. Electrochem. Soc., 147 (5), J1718 (2001).Google Scholar
9. Martra, G., Applied Catal., 200, 275 (2000).Google Scholar
10. Straka, J., Schmidt, P., Dybal, J., Schneider, B. and Spevacek, J. Polymer 36, 1147 (1995).Google Scholar