No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Quantitative evaluation of coherency strains around particles in the alloy Ni-12 at.% Al has been performed by means of high resolution electron microscopy (HREM) and convergent bean electron diffraction (CBED). Evaluation of the elastic strain fields around particles can give insight into the elastic interaction between particles during their coarsening mechanism and especially for the late stages where the elastic energy becomes particularly important. Typically, particles form spatial arrangements after long aging times. In the case of fcc-type structures, they align along the <001> soft elastic directions and form groups of many particles. HREM has been used to acquire images including the particle matrix interface. The selected zone axis is [001]. The quantitative analysis to determine the positions of the intensity maxima and the subsequent evaluation of the lattice parameters, is made by using the software Darip. Two different directions with respect to the particle matrix interface (parallel and perpendicular) are considered for the evaluation. These measurements are compared to determinations made by means of quantitative evaluation based on calibrated CBED patterns taken from similar regions of the samples.