Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T18:10:17.015Z Has data issue: false hasContentIssue false

Detection and Damage-analysis of Bio-Particles and for Safety-Evaluation of Plasma-treated water using DNA-manipulation

Published online by Cambridge University Press:  23 May 2012

Akira Mizuno
Affiliation:
Dept. Environmental and Life Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tenpaku-cho, Toyohashi, 441-8580 Japan
Hachiro Yasuda
Affiliation:
Dept. Environmental and Life Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tenpaku-cho, Toyohashi, 441-8580 Japan
Hirofumi Kurita
Affiliation:
Dept. Environmental and Life Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tenpaku-cho, Toyohashi, 441-8580 Japan
Kazunori Takashima
Affiliation:
Dept. Environmental and Life Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tenpaku-cho, Toyohashi, 441-8580 Japan
Get access

Abstract

Effect of non-thermal plasma (NTP) on bio-particles has been studied using Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and bacteriophages. NTP has been used, and states of different biological components were monitored during the course of the exposure. Analysis of green fluorescent protein (GFP), introduced into E.coli cells proved that NTP causes a prominent protein damages without cutting peptide bonds. We have developed a biological assay which evaluates in vivo DNA damage of the bacteriophages. Different doses of the plasma were applied to wet state of λ phages. From the plasma-exposed λ phages, DNA was purified and subjected to in vitro DNA packaging reactions. The re-packaged phages consist of the DNA from discharged phages and brand-new coat proteins. Survival curves of the re-packaged phages showed extremely large D value (D = 25 s) compared to the previous D value (D = 3 s) from the discharged phages. The results indicate that DNA damage hardly contributed to the inactivation, and the damage in coat proteins is responsible for inactivation of the phages. We also report a single-molecule-based analysis of strand breakages on large DNA molecules induced by the plasma exposure. Single-molecule observation of DNA that involved molecular combing was used to measure the length of individual DNA molecules. The measured DNA length showed that plasma exposure caused a marked change in length of DNA molecules. The rate of plasmainduced strand breakage on large random-coiled DNA molecules was determined using a simple mathematical model. The measured rate shows good relation with the plasma exposure time, and could be used for safety evaluation of the plasma treated water.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Montie, C., Kelly-Wintenberg, K., Roth, J. R., IEEE Trans. Plasma Sci. 28 41 (2002).10.1109/27.842860Google Scholar
2. Laroussi, M., Alexeff, I., Kang, W. L., IEEE Trans. Plasma Sci. 28 184 (2000).Google Scholar
3. Herrmann, H. W., Henins, I., Park, J., Selwyn, G. S., Phys. Plasmas 6 2284 (1999).Google Scholar
4. Gallagher, M. J. Jr., Vaze, N., Gangoli, S., Vasilets, V. N., Gutsol, A. F., Milovanova, T. N., Anandan, S., Murasko, D. M., Fridman, A. A., IEEE Trans. Plasma Sci. 35 1501 (2007).10.1109/TPS.2007.905209Google Scholar
5. Yasuda, H., Hashimoto, M., Rahman, M. M., Takashima, K., Mizuno, A., Plasma Process. Polym. 5 615 (2008)Google Scholar
6. Sladek, R. E. J., Stoffels, E., J. Phys. D: Appl. Phys. 38 1716 (2005).Google Scholar
7. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L’H., Int. J. Pharm. 226 1 (2001).10.1016/S0378-5173(01)00752-9Google Scholar
8. Deng, X. T., Shi, J. J., Chen, H. L., Kong, M. G., Appl. Phys. Lett. 90 013903 (2007).Google Scholar
9. Sato, T., Doi, A., Urayama, T., Nakatani, T., Miyahara, T., IEEE Trans. Ind. Appl. 43 1159 (2007).Google Scholar
10. Tanino, M., Xilu, W., Takashima, K., Katsura, S., and Mizuno, A., Int’l J. of Plasma Environmental Science & Technology 1 102 (2007)Google Scholar
11. Yasuda, H., Miura, T., Kurita, H., Takashima, K., and Mizuno, A., Plasma Process. Polym. 7 301 (2010).Google Scholar
12. Abdel-Salam, M., Nakano, M. and Mizuno, A., J. Physics Conf. Ser. 142 012020 (2008).10.1088/1742-6596/142/1/012020Google Scholar
13. Tanaka, Y., Sakuraba, M., Yasuda, H., Saiki, A., Kurita, H., Takashima, K. and Mizuno, A., Spring meeting of Institute of Electrostatics Japan, 89 (2011).Google Scholar
14. Nagato, K., J. IEEJ 23 37 (1999).Google Scholar
15. Stoffels, E., Flikweert, A. J., Stoffls, W. W. and Kroesen, G M W, Plasma Sources Sci. Technol. 11 383 (2002).10.1088/0963-0252/11/4/304Google Scholar
16. Stoffels, E., Kieft, I. E. and Sladek, R. E. J., J. Phys. D: Applied Physics 36 2908 (2003).Google Scholar
17. Yonson, S. et al. ., J. Phys. D: Applied Physics 39 3508 (2006).10.1088/0022-3727/39/16/S08Google Scholar
18. Dower, W. J., Nucl. Acids Res. 16 6127 (1988).Google Scholar
19. Cymbalyuk, E. S. et al. ., FEBS Lett. 234 203 (1988).10.1016/0014-5793(88)81334-6Google Scholar
20. Fengqing, H., Song, Y., New Journal of Physics 11 1 (2009).Google Scholar
21. Leduc, M., Dguay, , Leask, R. L. and Coulombe, S., New Journal of Physics 11 1 (2009)Google Scholar
22. Hanahan, D., J.Mol. Biol. 166 557 (1983).Google Scholar
23. Inoue, H., Nojima, H., and Okayama, H., Gene 96 23 (1990).Google Scholar
24. Kurita, H., Nakajima, T., Yasuda, H., Takashima, K., Mizuno, A., Wilson, J. I. B., and Cunningham, S., Appl. Phys. Lett. 99 191504 (2011).Google Scholar
25. Oshige, M., Yamaguchi, K., Matsuura, S. et al. ., Anal. Biochem. 400 145 (2010).Google Scholar
26. Yoshikawa, Y., Mori, T., Magome, N. et al. ., Chem. Phys. Lett. 456 80 (2008).10.1016/j.cplett.2008.03.009Google Scholar