Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:31:54.670Z Has data issue: false hasContentIssue false

Designing Glasses with Tunable Structure and Properties by Computer Simulation

Published online by Cambridge University Press:  31 January 2011

Liping Huang
Affiliation:
huangl5@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, New York, United States
Fenglin Yuan
Affiliation:
yuanf4@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, New York, United States
Qing Zhao
Affiliation:
zhaoq2@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, New York, United States
Get access

Abstract

A normal solid becomes stiffer when squeezed and softer when heated. In contrast, silica glass behaves the opposite way: its elastic moduli decrease upon compression and increase upon heating. Silica glass is also known to densify under compression and radiations. These have been long-standing mysteries in materials science. Using molecular dynamics simulation, we uncovered the structural origins of the anomalous thermo-mechanical behaviors and mechanisms of permanent densification in silica glass. Accordingly, these anomalies can be attributed to localized structural transitions, analogous to those that occur in the crystalline counterparts. The irreversible densification in silica glass is achieved through structural transition involving bond breaking and re-formation under a combination of high pressure and temperature. We further revealed that the anomalous thermo-mechanical behaviors are inherently connected to the ability of the glass to undergo permanent densification. Our computer simulations demonstrate that by processing in ways that gradually eliminates anomalous thermo-mechanical behaviors, degree of the glass to undergo densification can be eventually eradicated. This provides the conceptual foundation for the bottom-up design of new glasses with tunable structure and properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mishima, O. Calvert, L. D. and Whalley, E. Nature 314, 76 (1985).Google Scholar
2 Grimsditch, M. Phys. Rev. Lett. 52, 2379 (1984).Google Scholar
3 Grimsditch, M. Bhadra, R. and Meng, Y. Phys. Rev. B 38, 7836 (1988).Google Scholar
4 Ohtaka, O. Arima, H. Fukui, H. et al. , Physical Review Letters 92 (2004).Google Scholar
5 Guthrie, M. Tulk, C. A. Benmore, C. J. et al. , Physical Review Letters 93 (2004).Google Scholar
6 Sastry, S. and Angell, C. A. Nature Materials 2, 739 (2003).Google Scholar
7 Nicholas, J. D. Sinogeikin, S. V. Kieffer, J. et al. , Phys. Rev. Lett. 92, 215701 (2004).Google Scholar
8 Tkachev, S. N. Manghnani, M. H. and Williams, Q. Physical Review Letters 95 (2005).Google Scholar
9 Champagnon, B. Martinet, C. Coussa, C. et al. , Journal of Non-Crystalline Solids 353, 4208 (2007).Google Scholar
10 Champagnon, B. Martinet, C. Boudeulle, M. et al. , Journal of Non-Crystalline Solids 354, 569 (2008).Google Scholar
11 Inamura, Y. Katayama, Y. and Utsumi, W. Journal of Physics-Condensed Matter 19 (2007).Google Scholar
12 Lee, S. K. Eng, P. J. Mao, H. K. et al. , Nat. Mater. 4, 851 (2005).Google Scholar
13 Brazhkin, V. V. Katayama, Y. Trachenko, K. et al. , Physical Review Letters 101 (2008).Google Scholar
14 Meade, C. Hemley, R. J. and Mao, H. K. Phys. Rev. Lett. 69, 1387 (1992).Google Scholar
15 Mukherjee, G. D. Vaidya, S. N. and Sugandhi, V. Physical Review Letters 87 (2001).Google Scholar
16 Angell, C. A. and Kanno, H. Science 193, 1122 (1976).Google Scholar
17 Fukuhara, M. and Sanpei, A. Jpn. J. Appl. Phys. 33, 2890 (1994).Google Scholar
18 Youngman, R. E. Kieffer, J. Bass, J. D. et al. , J. Non-Cryst. Solids 222, 190 (1997).Google Scholar
19 Polian, A. Vo-Thanh, D., and Richet, P. Europhys.Lett. 57, 375 (2002).Google Scholar
20 Mao, H. K. Bell, P. M. Shaner, J. W. et al. , Journal of Applied Physics 49, 3276 (1978).Google Scholar
21 Bridgman, P. W. Am. J. Sci. 10, 359 (1925).Google Scholar
22 Bridgman, P. W. Proc. Am. Acad. Arts Sci 76, 9 (1945).Google Scholar
23 Bridgman, P. W. Proc. Am. Acad. Arts Sci 76, 71 (1948).Google Scholar
24 Meade, C. and Jeanloz, R. Phys. Rev. B 35, 236 (1987).Google Scholar
25 Vukevich, M. R. J. Non-Cryst. Solids 11, 25 (1972).Google Scholar
26 Tsiok, O. B. Brazhkin, V. V. Lyapin, A. G. et al. , Phys. Rev. Lett. 80, 999 (1998).Google Scholar
27 El'kin, F. S., Brazhkin, V. V. Khvostantsev, L. G. et al. , Jetp Letters 75, 342 (2002).Google Scholar
28 Cohen, H. M. and Roy, R. Phys. Chem. Glasses 6, 149 (1965).Google Scholar
29 Grimsditch, M. Phys. Rev. B 34, 4372 (1986).Google Scholar
30 Hemley, R. J. Mao, H. K. Bell, P. M. et al. , Phys. Rev. Lett. 57, 747 (1986).Google Scholar
31 Susman, S. Volin, K. J. Price, D. L. et al. , Phys. Rev. B 43, 1194 (1991).Google Scholar
32 Mukherjee, G. D. Vaidya, S. N. and Sugandhi, V. Phys. Rev. Lett. 87, 195501 (2001).Google Scholar
33 Babcock, C. L. Barder, S. W. and Fajans, K. Ind. Eng. Chem 46, 161 (1954).Google Scholar
34 Parc, R. Le, Levelut, C. Pelous, J. et al. , Journal of Physics-Condensed Matter 18, 7507 (2006).Google Scholar
35 Jin, W. Kalia, R. K. and Vashishta, P. Phys. Rev. Lett. 71, 3146 (1993).Google Scholar
36 Trachenko, K. and Dove, M. T. Phys. Rev. B 67, 064107 (2003).Google Scholar
37 Della, R. J. Valle and Venuti, E. Phys. Rev. B 54, 3809 (1996).Google Scholar
38 Tse, J. S. Klug, D. D. and Page, P. L. Phys. Rev. B 46, 5933 (1992).Google Scholar
39 Liang, Y. Miranda, C. R. and Scandolo, S. High Pressure Research 28, 35 (2008).Google Scholar
40 Liang, Y. F. Miranda, C. R. and Scandolo, S. Physical Review B 75 (2007).Google Scholar
41 Liu, B. Wang, J. Y. Zhou, Y. C. et al. , Chinese Physics Letters 25, 2747 (2008).Google Scholar
42 Takada, A. Phys. Chem. Glasses 45, 156 (2004).Google Scholar
43 Takada, A. Journal of the Ceramic Society of Japan 116, 880 (2008).Google Scholar
44 Takada, A. Catlow, C. R. A. and Price, G. D. J. Phys.: Condens. Matter 7, 8659 (1995).Google Scholar
45 Takada, A. Catlow, C. R. A. and Price, G. D. J. Phys.: Condens. Matter 7, 8693 (1995).Google Scholar
46 Takada, A. Richet, P. Catlow, C. R. A. et al. , Journal of Non-Crystalline Solids 353, 1892 (2007).Google Scholar
47 Trachenko, K. Brazhkin, V. V. Ferlat, G. et al. , Physical Review B 78 (2008).Google Scholar
48 Trachenko, K. and Dove, M. T. J. Phys.: Condens. Matter 14, 7449 (2002).Google Scholar
49 Tse, J. S. Klug, D. D. and Page, Y. Le, Phys. Rev. B 46, 5933 (1992).Google Scholar
50 Huang, L. P. and Kieffer, J. Phys. Rev. B 69, 224203 (2004).Google Scholar
51 Huang, L. P. and Kieffer, J. Phys. Rev. B 69, 224204 (2004).Google Scholar
52 Huang, L. P. and Kieffer, J. Phys. Rev. B 74 (2006).Google Scholar
53 Huang, L. P. and Kieffer, J. Appl. Phys. Lett. 89 (2006).Google Scholar
54 Huang, L. P. and Kieffer, J. Glass Sci. Technol. 77, 124 (2004).Google Scholar
55 Huang, L. P. Duffrene, L. and Kieffer, J. J. of Non-Cryst. Solids 349, 1 (2004).Google Scholar
56 Huang, L. Nicholas, J. Kieffer, J. et al. , Journal of Physics-Condensed Matter 20 (2008).Google Scholar
57 Ferlat, G. Charpentier, T. Seitsonen, A. P. et al. , Physical Review Letters 101 (2008).Google Scholar
58 Huang, L. P. and Kieffer, J. J. Chem. Phys. 118, 1487 (2003).Google Scholar
59 Andersen, H. C. J. Chem. Phys. 72, 2384 (1980).Google Scholar
60 Zha, C. S. Hemley, R. J. Mao, H. K. et al. , Physical Review B 50, 13105 (1994).Google Scholar
61 Schilling, J. S. Journal of Physics and Chemistry of Solids 59, 553 (1998).Google Scholar
62 Grande, T. Holloway, J. R. McMillan, P. F. et al. , Nature 369, 43 (1994).Google Scholar
63 Ngai, K. L. and Capaccioli, S. Journal of Physics-Condensed Matter 20, 244101 (2008).Google Scholar
64 Wondraczek, L. Sen, S. Behrens, H. et al. , Physical Review B 76 (2007).Google Scholar
65ORNL: http://www.nccs.gov/jaguar/. The Cray XT Jaguar, has more than 180,000 processors, each with 2 gigabyte of local memory. Rated at 1.64 petaflops, it is currently the fastest general purpose supercomputer in the world.Google Scholar