Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T11:44:34.711Z Has data issue: false hasContentIssue false

Design of Water-Soluble Quantum Dots with Novel Surface Ligands for Biological Applications

Published online by Cambridge University Press:  01 February 2011

H. Tetsuo Uyeda
Affiliation:
Division of Optical Sciences, Code, 5611, U.S. Naval Research Laboratory, Washington, DC 20375
Igor L. Medintz
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6910, U.S. Naval Research Laboratory, Washington, DC 20375
Hedi Mattoussi
Affiliation:
Division of Optical Sciences, Code, 5611, U.S. Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We have designed a series of organic oligo- and polyethylene glycol (PEG) based surface capping ligands that allow for QD manipulation in aqueous media. We utilized readily available thioctic acid and various oligo- and polyethylene glycols in simple esterification schemes, followed by reduction of the dithiolane to produce multi-gram quantities of capping substrates. Cap exchange of the native trioctyl-phosphine and -phosphine oxide based ligands with the PEG-terminated dithiol-alkyl cap readily resulted in aqueous dispersions of QDs that were homogeneous and stable in various pH ranges over an extended period of time. Mixed surface capping strategies utilizing ratios of dihydrolipoic acid to the pegylated dihydrolipoic acid were also prepared. We anticipate that such systems should allow one to covalently attach amine containing biomolecules to nanoparticle systems bearing carboxylates, employing known coupling agents, such as (dimethylamino) propyl-3-ethyl-carbodiimide (EDC). This design and conjugation strategy may facilitate the development of a new generation of QD-bioconjugates, which can be directly utilized in bio-related applications such as sensing and cellular imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schrock, E., duManoir, S., Veldman, T., Schoell, B., Wienberg, J., FergusonSmith, M. A., Ning, Y., Ledbetter, D. H., Bar-Am, I., Soenksen, D., Garini, Y., and Ried, T., Science (Washington D.C.) 273, 494497 (1996).Google Scholar
2. Roederer, M., DeRosa, S., Gerstein, R., Anderson, M., Bigos, M., Stovel, R., Nozaki, T., Parks, D., and Herzenberg, L., Cytometry 29, 328339 (1997).Google Scholar
3. Hermanson, G. T., Bioconjugate Techniques (Academic, San Diego, 1996).Google Scholar
4. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science (Washington D.C.) 281, 20132016 (1998).Google Scholar
5. Chan, W. C. W. and Nie, S., Science (Washington D.C.) 5385, 20162018 (1998).Google Scholar
6. Jaiswal, J. K., Mattoussi, H., Mauro, J. M., and Simon, S. M., Nature Biotech. 21, 4751 (2003).Google Scholar
7. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P., Nature Biotech. 21, 4146 (2003).Google Scholar
8. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., and Bawendi, M. G., J. Am. Chem. Soc. 122, 1214212150 (2000).Google Scholar
9. Tran, P. T., Goldman, E. R., Anderson, G. P., Mauro, J. M., and Mattoussi, H., Phys. Stat. Sol. B. 229, 427432 (2002).Google Scholar
10. Han, M. Y., Gao, X. H., Su, J. Z., and Nie, S., Nature Biotech. 19, 631635 (2001).Google Scholar
11. Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T., and Mauro, J. M., Anal. Chem. 74, 841847 (2002).Google Scholar
12. Mattoussi, H., Kuno, M. K., Goldman, E. R., Anderson, G. P., and Mauro, J. M., in Optical Biosensors: Present and Future, Elsevier, Amsterdam, 2002, p. 537569.Google Scholar
13. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N., and Ruoslahti, E., P.N.A.S. 99, 1261712621 (2002).Google Scholar
14. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A., Science (Washington D.C.) 298, 17591762 (2002).Google Scholar
15. Aldana, J., Wang, A., and Peng, X., J. Am. Chem. Soc. 123, 88448850 (2001).Google Scholar
16. Kim, S-J. and Bawendi, M. G., J. Am. Chem. Soc., in press (2003).Google Scholar
17. Demas, J. N. and Corsby, G. A., J. Phys. Chem. 75, 9911024 (1971).Google Scholar