Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T22:43:10.656Z Has data issue: false hasContentIssue false

Design of Nano-Composites for Ultra-High Strengths and Radiation Damage Tolerance

Published online by Cambridge University Press:  31 January 2011

Amit Misra
Affiliation:
amisra@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
X. Zhang
Affiliation:
X_Zhang@fakemail.com, Texas A&M University, College Station, Texas, United States
M. J. Demkowicz
Affiliation:
MJDemkowicz@fakemail.com, MIT, Cambridge, Massachusetts, United States
R. G. Hoagland
Affiliation:
RGHoagland@fakemail.com, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
M. Nastasi
Affiliation:
MNastasi@fakemail.com, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Get access

Abstract

The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and therefore these materials contain a large volume fraction associated with interfaces. These interfaces act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Using results on model systems such as Cu-Nb, we highlight the critical role of the atomic structure of the incoherent interfaces that exhibit multiple states with nearly degenerate energies in acting as sinks for radiation-induced point defects. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 nm and below. The strategies for design of radiation-tolerant structural materials based on the knowledge gained from this work will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1BES Workshop report Basic Research Needs for Advanced Nuclear Energy Systems http://www.science.doe.gov/bes/reports/files/ANES_rpt.pdfGoogle Scholar
2 Hochbauer, T., Misra, A., Hattar, K. and Hoagland, R.G., J. Appl. Phys,. 98, 123516 (2005).10.1063/1.2149168Google Scholar
3 Demkowicz, M.J., Wang, Y.Q., Hoagland, R.G. and Anderoglu, O., Nucl. Instru. Methods B, 261 (2007), 524.10.1016/j.nimb.2007.04.110Google Scholar
4 Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Hochbauer, T., Misra, A. and Hoagland, R.G., Nucl. Instru. Methods B, 261, (2007), 1129.10.1016/j.nimb.2007.03.098Google Scholar
5 Hattar, K., Demkowicz, M.J., Misra, A., and Hoagland, R.G., Scripta Mater,. 58 (2008) 541.10.1016/j.scriptamat.2007.11.007Google Scholar
6 Misra, A., Kung, H. and Hoagland, R.G., Philos. Mag,. 84, 1021 (2004).10.1080/14786430310001659480Google Scholar
7 Daw, M. S. and Baskes, M. I., Physical Review B 29, 6443 (1984).10.1103/PhysRevB.29.6443Google Scholar
8 Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., et al., Physical Review B (Condensed Matter and Materials Physics) 63, 224106 (2001).10.1103/PhysRevB.63.224106Google Scholar
9 Johnson, R. A. and Oh, D. J., Journal Of Materials Research 4, (1989) 1195.10.1557/JMR.1989.1195Google Scholar
10 Demkowicz, M. J., Hirth, J.P. and Hoagland, R. G., Phys. Rev. Lett., 100, (2008) 136102.10.1103/PhysRevLett.100.136102Google Scholar
11 Ziegler, J. F., Biersack, J. P., and Littmark, U., The stopping and range of ions in solids (Pergamon, New York, 1985).Google Scholar
12 Kuwata, K. T., Erickson, R. I., and Doyle, J. R., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 201, (2003) 566.Google Scholar
13 Anderson, P. M., Bingert, J. F., Misra, A., Hirth, J.P., Acta Materialia 51, (2003) 6059.10.1016/S1359-6454(03)00428-2Google Scholar
14 Dienes, G. J. and Vineyard, G. H., Radiation efects in solids (Interscience Publishers, New York, 1957).Google Scholar
15 Misra, A., Hirth, J.P. and Hoagland, R.G., Acta Materialia, 53, (2005) 4817.10.1016/j.actamat.2005.06.025Google Scholar
16 Nita, N., Schaeublin, R., Victoria, M. and Valiev, R.Z., Philos. Mag., 85, (2005) 723.10.1080/14786430412331319965Google Scholar
17 Samaras, M., Derlet, P.M., Swygenhoven, H. van and Victoria, M., Phys. Rev. Lett., 88, (2002) 125505.10.1103/PhysRevLett.88.125505Google Scholar
18 Rose, M., Balogh, A.G. and Hahn, H., Nucl. Instru. Methods B, 127/128, (1997) 119.10.1016/S0168-583X(96)00863-4Google Scholar
19 Hienisch, H.L., Gao, F. and Kurtz, R.J., J. Nucl. Mater., 329-333, (2004) 924.10.1016/j.jnucmat.2004.04.142Google Scholar