Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T01:11:19.350Z Has data issue: false hasContentIssue false

Deposition of Optimal a-Si:H and a-SiGe:H by HWCVD Using the Same Filament Temperature and Substrate Temperature

Published online by Cambridge University Press:  21 March 2011

A.H. Mahan
Affiliation:
NREL, 1617 Cole Blvd., Golden, CO 80401
Y. Xu
Affiliation:
NREL, 1617 Cole Blvd., Golden, CO 80401
L.M. Gedvilas
Affiliation:
NREL, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

The incorporation of high Ge content a-SiGe:H into a low bandgap solar cell device commonly involves the use of bandgap (Ge) profiling. In previous work using the hot wire (HWCVD) technique, device quality low bandgap (ETauc = 1.25eV) a-SiGe:H films were deposited at low Tsub (∼200-250°C) filament operating at Tfil ∼ 1750-1800°C. However, higher bandgap films containing little or no Ge and deposited under the same low temperature (Tsub,Tfil) conditions were of decidedly inferior quality to those deposited using higher temperatures (Tfil∼2000°C,Tsub∼360°C) solar cell with an efficiency ∼ 5.85% was fabricated using these materials, it was clear that our best ‘end point’ materials alloying at this low Tfil severely limits film reproducibility and filament lifetime. This work explores deposition of device quality low bandgap a-SiGe:H and (high bandgap) a-Si:H, both at the same low Tsub, using a tantalum (Ta) filament operating at low Tfil. Film material properties are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70 (1997) 2975.Google Scholar
2. Wang, Q., Iwaniczko, E., Yang, J., Lord, K., and Guha, S., MRS Symp. Proc. 664 (2001) A7.5.Google Scholar
3. Xu, Y., Nelson, B.P., Gedvilas, L.M., and Reedy, R.C., Thin Solid Films 430 (2003) 197.Google Scholar
4. Y, Xu, Nelson, B.P., Williamson, D.L., Gedvilas, L.M., and Reedy, R.C., MRS Symp. Proc. 762 (2003) 455.Google Scholar
5. Xu, Y., Yan, B., Nelson, B.P., Iwaniczko, E., Reedy, R.C., Mahan, A.H., and Branz, H., this conference.Google Scholar
6. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69 (1991) 6728.Google Scholar
7. Mahan, A.H., Mason, A., Nelson, B.P. and Gallagher, A.C., MRS Symp. Proc. 609 (2000) A6.6.Google Scholar
8.Design Data from Univ. Cal. Berkeley, ‘Characteristics of Pure Tungsten prepared by Macomber, T.W., Oct.14, 1944.Google Scholar
9. Veen, M. van, Ph.D. Thesis (Utrecht University, 2003), pg. 26.Google Scholar
10. Xu, Y., private communication.Google Scholar
11. Doyle, J., Robertson, R., Lin, G.H., He, M.Z., and Gallagher, A.C., J. Appl. Phys. 64 (1988) 3215.Google Scholar
12. Li, Y.-M., Ph.D. Thesis, Harvard University (1990), pg. 78.Google Scholar
13. Terakawa, A., Ph.D. Thesis, Kyoto University (1999), pg. 48.Google Scholar
14. Mahan, A.H. and Vanecek, M., AIP Conference Proc. 234 (1991) 195.Google Scholar
15. Mahan, A.H., Williamson, D.L., and Furtak, T.E., MRS Symp. 467 (1997) 657.Google Scholar
16. Mahan, A.H., Gedvilas, L.M., and Webb, J.D., J. Appl. Phys. 87 (2000) 1650.Google Scholar