Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T14:02:06.492Z Has data issue: false hasContentIssue false

Dependence of Light-Induced Esr on NitroGen Content in Amorphous Silicon-Nitrogen Alloys

Published online by Cambridge University Press:  10 February 2011

Jinyan Zhang
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Toshihiro Ohtsuka
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Minoru Kumeda
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Tatsuo Shimizu
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Get access

Abstract

The LESR signals are observed for the a-Si1-xNx:H samples over a wide range of nitrogen content at 77K. By decomposing the LESR signals using three components, i.e. the neutral Si dangling bond (Do) component, the broad component with a linewidth of 16 G, and the narrow component with a linewidth of 5 G, we find that the three components are observed only in the Si-rich samples. The density of light-induced Do increases with x, whereas the densities of both the narrow and the broad components increase in the range of x≦0.32 and are almost independent of x for larger x. The g-value of the broad components falls down sharply from 2.01 to 2.006 with an increase in x, while the g-value of the narrow component is unchanged and it is around 2.004. All of the three components can be annihilated by sub-gap illumination. The origins of the broad and the narrow components are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shimizu, T., Kidoh, H., Morimoto, A., and Kumeda, M., Jpn.J.Appl.Phys. 28, 586 (1989).Google Scholar
2. Schumm, G., Jackson, W.B., and Street, R.A., Phys.Rev. B 48, 14198 (1993).Google Scholar
3. Zhou, J-H., Okagawa, T., Kumeda, M., and Shimizu, T., Jpn.J.Appl.Phys 33, L1135 (1994).Google Scholar
4. Zhou, J-H., Kumeda, M., and Shimizu, T., Jpn.J.Appl.Phys. 34, 3982 (1995).Google Scholar
5. Ristein, J., Hautala, J., and Taylor, P.C., Phys.Rev. B 40, 80 (1989).Google Scholar
6. Saleh, Z.M., Tarui, H., Takahama, H., Nakamura, N., Nishikuni, M., Tsuda, S., Nakano, S., and Kuwano, Y., Jpn.J.Appl.Phys. 32, 3376 (1993).Google Scholar
7. Street, R.A. and Biegelsen, D.K., Solid State Commun. 33, 1159 (1980).Google Scholar
8. Morigaki, K., Jpn.J.Appl.Phys. 22, 375 (1983).Google Scholar
9. Kumeda, M., Sugimoto, A., Zhang, J., Ozawa, Y., and Shimizu, T., Jpn.J.Appl.Phys. 32, L1046 (1993).Google Scholar
10. Zhang, J., Zhang, Q., Kumeda, M., and Shimizu, T., Phys.Rev. B 51, 2137 (1995).Google Scholar
11. Zhang, J., Kumeda, M., and Shimizu, T., Jpn.J.Appl.Phys. 32, 5533 (1995).Google Scholar
12. Zhang, J., Zhang, O., Kumeda, M., and Shimizu, T. in Amorphous Silicon Technology, edited by M., Hack, E.A., Schiff, A., Madan, M., Powell, and A., Matsuda (Mater. Res.Soc. Proc. 337, Pittsburgh, PA 1995), p. 367372.Google Scholar
13. Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys.Rev.Lett. 65, 756 (1990).Google Scholar
14. Hasegawa, S., Matsuda, M., and Kurata, Y., Appl.Phys.Lett. 58, 74 (1991).Google Scholar
15. Kanicki, J., Warren, W.L., Seager, C.H., Crowder, M.S., and Lenahan, P.M., J.Non-Cryst.Solids 137, 291 (1991).Google Scholar
16. Steward, A.D. and Jones, D.I., Phil.Mag. B 57, 431 (1988).Google Scholar
17. Shimizu, T., Durry, R., and Kumeda, M., in this proceedings.Google Scholar
18. Sokrates Pantelides, T., Phys.Rev.Lett. 57, 2979 (1986).Google Scholar
19. Umeda, T., Yamasaki, S., Isoya, J., and Tanaka, K., Abstract of 7th Jpn.Mater.Res.Soc. Symp. (1995) PA-5M.Google Scholar