Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-18T18:54:57.107Z Has data issue: false hasContentIssue false

Degradation of Assembled Silicon Nanostructured Thin Films: a Theoretical and Experimental Study

Published online by Cambridge University Press:  26 February 2011

Valeria Bertani
Affiliation:
valeriabertani@yahoo.it, Università di Catania, Scienze Chimiche, Viale A. Doria, 6, Catania, N/A, 95125, Italy, +39 0957385102, +39 095580138
Luisa D'Urso
Affiliation:
ldurso@unict.it, Università di Catania, Scienze Chimiche, Italy
Alfio Alessandro Scalisi
Affiliation:
ascalisi@unict.it, Università di Catania, Scienze Chimiche, Italy
Giuseppe Compagnini
Affiliation:
gcompagnini@unict.it, Università di Catania, Scienze Chimiche, Italy
Orazio Puglisi
Affiliation:
opuglisi@unict.it, Università di Catania, Scienze Chimiche, Italy
Get access

Abstract

The study of the structures and properties of small elemental clusters has been an extremely active area of current research, due to the peculiar behavior of these species halfway between that of single atoms and of the bulk phase. In this work silicon nanoclusters are generated by ablation of a high purity polycrystalline rod with a pulsed laser vaporization source and then deposited on a support. Their structure is studied both in the gas phase by means of Time of Flight Mass Spectrometry and in the solid phase through in situ Raman and Infrared Spectroscopy. The spectra reveal that the as deposited clusters are hydrogenated with negligible amount of oxide. Degradation of silicon nanoclusters has been studied after gas exposure. In the gas of air a consistent modification was observed, leading to a near-infrared luminescent silicon nanoparticles. In the second part of the work, density functional theory is applied to investigate the geometrical structure of silicon clusters and their interaction, in term of structure and energy, with different gases. The calculations were performed with the Gaussian 03 program suite, adopting the B3LYP functional to calculate the exchange and correlation energy. Si8 has been chosen as model cluster to study the degradation of silicon clusters both kinetically and thermodynamically, in order to explain the experimental evidences. Experimental and calculated infrared spectra are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, Q. and Biswas, R., Phys. Rev. B 52, 10705 (1995).Google Scholar
2. Kirkey, W. D., Cartwright, A. N., Li, X., He, Y., Swihart, M. T., Sahoo, Y. and Prasad, P. N. in Quantum Dots, Nanoparticles and Nanowires, edited by Guyot-Sionnest, P., Mattoussi, H.. Woggon, U. and Wang, Z.-L. (Mater. Res. Soc. Symp. Proc. 789, Pittsburgh, PA, 2004).Google Scholar
3. Li, Z. F. and Ruckenstein, E., Nano Letters 4, 1463 (2004).Google Scholar
4. Bower, J. E. and Jarrold, M. F., J. Chem. Phys. 97, 8312 (1992).Google Scholar
5. Melinon, P., Keghelian, P., Prevel, B., Dupuis, V., Perez, A., Champagnon, B., Guyot, Y., Pellarin, M., Lermé, J., Broyer, M., Rousset, J. L. and Delichere, P., J. Chem. Phys. 108, 4607 (1998).Google Scholar
6. Compagnini, G., D'Urso, L., Scalisi, A. A., Puglisi, O. and Pignataro, B., in publication on Thin Solid Films (2005).Google Scholar
7. Compagnini, G., D'Urso, L. and Puglisi, O., in publication on Mat. Sci. & Eng. C (2005).Google Scholar
8.(a) Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
(b) Lee, C., Yang, W. and Parr, R. G., Phys. Rev. B 37, 785 (1988).Google Scholar
9.(a) Ditchfield, R., Hehre, W. J., and Pople, J. A., J. Chem. Phys. 54, 724 (1971).Google Scholar
(b) Hehre, W. J., Ditchfield, R., and Pople, J. A., J. Chem. Phys. 56, 2257 (1972).Google Scholar
(c) Hariharan, P. C. and Pople, J. A., Mol. Phys. 27, 209 (1974).Google Scholar
(d) Gordon, M. S., Chem. Phys. Lett. 76, 163 (1980).Google Scholar
(e) Hariharan, P. C. and Pople, J. A., Theo. Chim. Acta 28, 213 (1973).Google Scholar
(f) Blaudeau, J.-P., McGrath, M. P., Curtiss, L. A., and Radom, L., J. Chem. Phys. 107, 5016 (1997).Google Scholar
(g) Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., DeFrees, D. J., Pople, J. A., and Gordon, M. S., J. Chem. Phys. 77, 3654 (1982).Google Scholar
(e) Binning, R. C. Jr and Curtiss, L. A., J. Comp. Chem. 11, 1206 (1990).Google Scholar
(e) Rassolov, V. A., Pople, J. A., Ratner, M. A., and Windus, T. L., J. Chem. Phys. 109, 1223 (1998).Google Scholar
(f) Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., and Curtiss, L. A., J. Comp. Chem. 22, 976 (2001).Google Scholar
10. Gaussian 03, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian, Inc., Wallingford CT, 2004.Google Scholar
11. Yoo, S. and Zeng, X. C., J. Chem. Phys. 119, 1442 (2003).Google Scholar
12. Ragavachari, K., Rohlfing, C. M. J. Chem. Phys. 89, 2219 (1988).Google Scholar
13. Majumder, C. and Kulshreshtha, S. K., Phys. Rev. B 69, 115432 (2004).Google Scholar
14. Xu, C., Taylor, T. R., Burton, G. R. and Neumark, D. M., J. Chem. Phys. 108, 1395 (1998).Google Scholar
15. Zhao, C. and Balasubramanian, K., J. Chem. Phys. 116, 3690 (2002).Google Scholar
16. Ballone, P., Andreoni, W., Car, R. and Parrinello, M., Phys. Rev. Lett. 60, 271 (1988).Google Scholar
17. Bazterra, V. E., Caputo, M. C., Ferraro, M. and Fuentealba, P., J. Chem. Phys. 117, 11158 (2002).Google Scholar
18. Nigam, S., Majumder, C. and Kulshreshtha, S. K., J. Chem. Phys. 121, 7756 (2004).Google Scholar
19. Fournier, R., Sinnott, S. B. and DePristo, A. E., J. Chem. Phys. 97, 4149 (1992).Google Scholar
20. Shvartsburg, A. A., Liu, B, Jarrold, M. F. and Ho, K.-M., J. Chem. Phys. 112, 4517 (2000).Google Scholar
21. Raghavachari, K. and Rohlfing, C. M., J. Chem. Phys. 94, 3670 (1991).Google Scholar
22. McCarthy, M. C. and Thaddeus, P., Phys. Rev. Lett. 90, 213003 (2003).Google Scholar
23. Zhu, X. and Zeng, X. C., J. Chem. Phys. 118, 3558 (2003).Google Scholar