Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-23T22:21:05.706Z Has data issue: false hasContentIssue false

Defects in Tetrahedrally Coordinated Amorphous Semiconductors

Published online by Cambridge University Press:  28 February 2011

P.C. Taylor*
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

In the tetrahedrally coordinated amorphous semiconductors the dominant defects deep in the gap are attributed to dangling bonds on the group IV atoms. These defects are commonly thought to have effective electronelectron correlation energies Ueff which are positive, although some tightbinding estimates suggest negative Ueff. Defect states near the band gap edges are invoked to account for many experimental results including the usual appearance of an Urbach absorption edge. These shallow defect states are usually attributed to strained bonds but two-fold-coordinated group IV atoms have also been suggested. The application of light of near-band-gap energies alters the deniity of paramagnetic dangling bonds. For large spin densities (ns ≥ 1017 cm−3) this increase is probably due to the creation of new defects, bui it is possible that at lower densities (ns ≤ cm−3) the rearrangement of electronic charge in existing defects is important. Impurities also contribute to the defects observed in tetrahedral amorphous semiconductors. Particular species include trapped atomic and molecular hydrogen, trapped N02 molecules, singly-coordinated oxygen atoms and E' centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spear, W.E. and LeComber, P.G., Solid State Commun. 17, 1193 (1975); Philos. Mag. 33, 935 (1976).Google Scholar
2. Carlson, D.E. RCA Rev. 38, 211 (1977).Google Scholar
3. Biegelsen, D.K., Proc. ET-ctron Resonance Soc. Symp. 3, 85 (1981).Google Scholar
4. Adler, D. and Shapiro, F.R., Physica 117B + 118B, 932 (1983).Google Scholar
5. Goodman, N.B. and Fritzsche, H., Phil.Mag. B42, 149 (1980).CrossRefGoogle Scholar
6. Street, R.A., Biegelsen, D.K. and Knights, J.C., Phys. Rev. B24, 969 (1981).Google Scholar
7. Adler, D., Kinam 4C, 225 (1982).Google Scholar
8. Knights, J.C., Biegelsen, D.T.. and Solomon, I., Solid State Cornun. 22, 133 (1977).Google Scholar
9. Pawlik, J.R. and Paul, W. in Amorphous and Liquid Semiconductors, Spear, W.E., ed. (Univ. of Edinburgh, Edinburgh, Scotland, 1977), p. 437.Google Scholar
10. Friederich, A. and Kaplan, D., J. Electron. Mater. 8, 79 (1979).Google Scholar
11. Street, R.A. and Biegelsen, D.K., Solid State Commun. 33, 1159 (1980).Google Scholar
12. Street, R.A. and Biegelsen, D.K., J. Non-Cryst. Solids 75 + 36, 651 (1980).Google Scholar
13. Friederich, A. and Kaplan, D., J. Phys. Soc. Jpn. 49, Suppl. A., 1237 (1980).Google Scholar
14. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
15. Dersch, H., Stuke, J. and Beichler, J., Phys. Status Solidi, B105, 265 (1981); B107, 307 (1981); Appl. Phys. Lett. 38, 456 (1981).Google Scholar
16. Ponft-uschka, W.M., Carlos, W.E., Taylor, P.C., and Griffith, R.W., Phys. Rev. B25, 4362 (1982).CrossRefGoogle Scholar
17. Taylor, P.C. and Ohlsen, W.D., Solar Cells 9, 113 (1983).Google Scholar
18. Lee, C., Ohlsen, W.D., Taylor, P.C., UlTal, H.S. and Ceasar, G.P., AIP Conf. Proc. 120, 205 (1984).Google Scholar
19. Stutzmann, M., Jackson, W.B. and Tsai, C.C., AIP Conf. Proc. 120, 213 (1984).Google Scholar
20. Lee, C., Ohlsen, W.D. and Taylor, P.C., Phys. Rev. B31, 100 (1985).Google Scholar
21. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B, in press.Google Scholar
22. Tanielian, M.H., Goodman, N.B. and Fritzsche, H., J. de Phys. 42, C4375 (1981).Google Scholar
23. Han, D. and Fritzsche, H., J. Non-Cryst. Solids 59 + 60, 397 (1983).Google Scholar
24. Guha, S., Huang, C.-Y., Hudgens, S.J. and Payson, J.S., J. Non-Cryst. Solids 66, 65 (1984).Google Scholar
25. Urbach, R., Phys. Rev. 42, 1324 (1953).Google Scholar
26. Schweitzer, L. and Sceffler, M., AIP Conf. Proc. 120, 379 (1984).Google Scholar
27. Abe, S. and Toyozawa, Y., J. Phys. Soc. Jpn. 50, 2M (1981).Google Scholar
28. Cohen, M.H., Soukoulis, C.M., and EconomYh, E.N., AIP Conf. Proc. 120, 371 (1984).Google Scholar
29. Carlos, W.E. and Taylor, P.C., Phys. Rev. B26, 3605 (1982).Google Scholar
30. Conradi, M.S. and Norberg, R.E., Phys. Rev. W24, 2285 (1981).Google Scholar
31. Carlos, W.E. and Taylor, P.C, Phys. Rev. B25,1435 (1982).Google Scholar
32. Boyce, J.B. and Stutzmann, M., Phys. Rev.T, in press.Google Scholar
33. VanderHeiden, E.D., Ohlsen, W.D., and Taylor, P.C., J. Non-Cryst. Solids 66, 115 (1984).CrossRefGoogle Scholar
34. Heiden, T.D. Van der, Ohlsen, W.D., and Taylor, P.C., Bull. Am. Phys. Soc. 30, 354 (1985).Google Scholar