Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:34:20.862Z Has data issue: false hasContentIssue false

Defect Reduction and Defect Engineering in Silicon-on-Sapphire Material Using Ge Implantation

Published online by Cambridge University Press:  26 February 2011

F. Namavar
Affiliation:
Spire Corporation, Patriot’s Park, Bedford MA, 01730
E. Cortesi
Affiliation:
Spire Corporation, Patriot’s Park, Bedford MA, 01730
N. M. Kalkhoran
Affiliation:
Spire Corporation, Patriot’s Park, Bedford MA, 01730
J. M. Manke
Affiliation:
Spire Corporation, Patriot’s Park, Bedford MA, 01730
B. L. Buchanan
Affiliation:
Spire Corporation, Patriot’s Park, Bedford MA, 01730
Get access

Abstract

Substantial reduction of defect density in silicon-on-sapphire (SOS) material is required to broaden its range of applications to include CMOS and bipolar devices. In recent years, solid phase epitaxy and regrowth (SPEAR) and double solid phase epitaxy (DSPE) processes were applied to SOS to reduce the density of defects in the silicon. These methods result in improved carrier mobilities, but also in increased leakage current, even before irradiation. In a radiation environment, this material has a large increase in radiation induced back channel leakage current as compared to standard wafers. In other words, the radiation hardness quality of the SOS declines when the crystalline quality of the Si near the sapphire interface is improved.

In this paper, we will demonstrate that Ge implantation, rather than Si implantation normally employed in DSPE and SPEAR processes, is an efficient and more effective way to reduce the density of defects near the surface silicon region without improving the Si/sapphire interface region. Ge implantation may be used to engineer defects in the Si/sapphire interface region to eliminate back channel leakage problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Namavar, F., Buchanan, B., Cortesi, E., and Sioshansi, P., Mat. Res. Soc. Symp. Proc. 147, 235 (1989).Google Scholar
2. Ham, W.E., Abrahams, M.S., Buiocchi, C.J., and Blanc, J., J. Electrochem. Soc. 124, 634 (1977).Google Scholar
3. Richmond, E.D., Campisi, G., and Twigg, M., Mat. Res. Soc. Symp. Proc. 107, 377 (1988), and references therein.Google Scholar
4. Lau, S.S., Matteson, S., Mayer, J.W., Revez, P., Gyulai, J., Roth, J., Sigmon, T.W., and Cass, T., Appl. Phys. Lett. 34, 76 (1977).Google Scholar
5. Roulet, M.E., Schwob, P., Golecki, I., and Nicolet, M.-A., Electron. Lett. 15, 527 (1979).Google Scholar
6. Inoue, T. and Yoshii, T, Appl. Phys. Lett. 36, 64 (1980).Google Scholar
7. Gupta, A. and Vasudev, P.L., Solid State Technology, 104, (1983).Google Scholar
8. Mayer, D.C., Vasudev, P.K., Lee, J.Y., Allen, Y.K., and Henderson, R.C., IEEE Electron Dev. Lett. EDL–5, 156 (1984).Google Scholar
9. Vasudev, P.K., IEEE Circuits and Devices Magazine, 17, July 1987.Google Scholar
10. Reedy, R.E. and Garcia, G.A., Mat. Res. Soc. Symp. Proc. 107, 365 (1988).Google Scholar
11. Bean, J.C., Appl. Phys. Lett. 36, 741 (1980).Google Scholar
12. Chrisou, A., Richmond, E.D., Wilkins, B.R., and Kundson, A.R., Appl. Phys. Lett. 44, 796 (1984).Google Scholar
13. Pellegrino, J.G., Twigg, M.E., and Richmond, E.D., Mat. Res. Soc. Symp. Proc. 107, 383 (1988).Google Scholar
14. Twigg, M.E., Richmond, E.D., and Pellegrino, J.G., Appl. Phys. Lett. 54, 1766 (1989).Google Scholar
15. Brandewie, J., IEEE SOS/SOI Technology Workshop, 6–8 October 1987, Durango, CO.Google Scholar
16. Worley, E., Brandwie, J., and Elkins, P., IEEE SOS/SOI technology Conference, Stateline, NV, 3–5 October 1989.Google Scholar
17. Cullen, G.W. and Duffy, M.T., IEEE SOS/SOI Technology Workshop, 6–8 October 1987, Durango, CO.Google Scholar
18. Johnson, E.A., Namavar, F., Cortesi, E., and Culbertson, R.J., Mat. Res. Soc. Symp. Proc. 157, 721 (1990).Google Scholar
19. Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988).Google Scholar
20. Crowder, et al., Appl. Phys. Lett. (1970).Google Scholar
21. Sadana, D.K., Maszara, W., Wortmann, J.J., Rozgonyi, G.A., and Chu, W.K., J. Electrochem. Soc. 131. 943 (1984).Google Scholar
22. Ayres, J.R., Brotherton, S.D., Clegg, J.B., Gill, A., J. Appl. Phys. 62, 3628 (1987).Google Scholar
23. Ajmara, A.C., Rozgony, G.A., and Fair, R.B., Appl. Phys. Lett. 52, 813 (1988).Google Scholar
24. Ozturk, M.C., Wortmann, J.J., and Fair, R.B., Appl. Phys. Lett. 52. 963 (1988).Google Scholar
25. Kuriyama, K., Aoki, S., Satoh, M., and Kurebayashi, M., J. Appl. Phys. 66, 1876 (1989).Google Scholar
26. Turan, R., Hugsted, B., Lonsjo, O.M., and Finstad, T.G., J. Appl. Phys. 66, 1155 (1989).Google Scholar