Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T23:21:51.235Z Has data issue: false hasContentIssue false

Defect Luminescence in Heavily Mg Doped GaN

Published online by Cambridge University Press:  10 February 2011

M. A. Reshchikov
Affiliation:
Department of Materials Science and Engineering and Materials Research Center Northwestern University, Evanston, IL, 60208
G.-C. Yi
Affiliation:
Department of Materials Science and Engineering and Materials Research Center Northwestern University, Evanston, IL, 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering and Materials Research Center Northwestern University, Evanston, IL, 60208
Get access

Abstract

Behavior of the photoluminescence band at about 2.8 eV in heavily Mg doped GaN has been studied at different temperatures and excitation intensities. The 2.8 eV band is attributed to donor-acceptor transitions involving a Mg acceptor. The large blue shift of the band with increasing excitation intensity is explained by variation in the contribution of close and distant pairs to the luminescence. The red shift of the band with increasing temperature under high excitation intensity conditions results from thermal release of carriers from close pairs. The thermal activation energy of the deep donor, about 0.4 eV, is determined from the quenching of the 2.8 eV luminescence band at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Kitoh, M., Hiramatsu, K., Akasaki, I., J. Electrochem. Soc., 137, 1639 (1990).Google Scholar
2. Viswanath, A. K., Shin, E., Lee, J. I., Yu, S., Kim, D., Kim, B., Choi, Y. and Hong, C.-H., J.Appl.Phys. 83, 2272 (1998).Google Scholar
3. Maruska, H. P., Stevenson, D. A. and Pankove, J.I., Appl. Phys. Lett. 22, 303 (1973).Google Scholar
4. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, Pt. 1, 1258 (1992).Google Scholar
5. Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Salvador, A., Sverdlov, B. N., Botchkarev, A., Morkoc, H., and Goldenberg, B., Appl. Phys. Lett. 68, 1883 (1996).Google Scholar
6. Oh, E., Park, H. and Park, Y., Appl. Phys. Lett 72, 70 (1998).Google Scholar
7. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., and Schlotter, P., Appl. Phys. Lett. 72, 1326 (1998).Google Scholar
8. Eckey, L., Gfug, U. Von, Holst, J., Hoffmann, A., Schineller, B., Heime, K., Heuken, M., Schön, O., and Beccard, R., J. Cryst. Growth 189/190, 523 (1998).Google Scholar
9. Myoung, J. M., Shim, K. H., Kim, C., Gluschenkov, O., Kim, K., Kim, S., Turnbull, D. A., and Bishop, S.G., Appl. Phys. Lett. 69, 2722 (1996).Google Scholar
10. Götz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996).Google Scholar
11. Seitz, R., Gaspar, C., Monteiro, T., Pereira, E., Leroux, M., Beaumont, B., and Gibart, P., Materials Science Forum 258–263, 1155 (Trans. Tech. Publications, Switzerland, 1997).Google Scholar
12. Shklovskii, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984), pp. 5373, 253-313.Google Scholar
13. Levanyuk, A. P., Osipov, V. V., Usp. Fiz. Nauk 133, 427 (1981) [Sov. Phys. Usp. 24, 187 (1981)].Google Scholar
14. Rong, F. C., Barry, W. A., Donegan, J. F., and. Watkins, G. D., Phys. Rev. B 54, 7779 (1996); W. A. Barry and G. D. Watkins, ibid., 7789 (1996).Google Scholar
15. Kaminskii, A. S. and Pokrovskii, Ya. E., Fiz. Tekh. Poluprovodn. 3, 1766 (1969) [Sov. Phys. Semicond. 3, 1496 (1970)].Google Scholar
16. Walle, C. G. Van de, Stampfl, C. and Neugebauer, J., J. Cryst. Growth 189/190, 505 (1998).Google Scholar