Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T06:22:05.965Z Has data issue: false hasContentIssue false

Defect Formation in Surface Modified TiO2 Nanostructures

Published online by Cambridge University Press:  21 March 2011

S.M. Prokes
Affiliation:
Naval Research Laboratory, Washington DC
James L. Gole
Affiliation:
Department of Physics, Georgia Institute of Technology, Atlanta, GA
Get access

Abstract

The defect formation in surface modified TiO2 has been studied. Anatase TiO2 structures in the 3-20 nm range formed by a wet chemical technique were surface modified and nitridation of the highly reactive TiO2nanocolloid surface was achieved by a quick and simple treatment in alkyl ammonium compounds. The nitriding process was also accompanied by a metal surface coating process using electroless plating techniques, resulting in a thin metal surface layer on the modified TiO2 nanostructures. The crystal structure of the resultant TiO2-xNx nano-colloids remained anatase and the freshly prepared samples exhibited a strong light emission near 560nm (2.21 eV), which red shifted to 660 nm (1.88 eV) and dropped in intensity with aging in the atmosphere. This behavior was also evident in some of the combined nitridized and metal coated TiO2 nano-colloids. Electron Spin Resonance performed on these samples identified a resonance at g = 2.0035, which increased significantly with nitridation. This resonance is attributed to an oxygen hole center created near the surface of the nanocolloid, which correlates well with the observed optical activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fujishima, A., Honda, K., Nature 238, 37 (1972).Google Scholar
[2] Fox, M.A., Dylay, M.T., Chem. Rev. 93, 341(1993).Google Scholar
[3] Ollis, D.E., “Photocatalytic Purification and Treatment of Water and Air” (Elsevier Sci. Publishing, New York, 1993).Google Scholar
[4] Tang, H., Prasad, K., Sanjines, R., Schmidt, P.E. and Levy, F., J. Appl. Phys. 75, 2042, (1994).Google Scholar
[5] Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W., Chem. Rev. 95, 69 (1995).Google Scholar
[6] Akikusa, J., Khan, S. U. M., J. Electrochem. Soc. 145, 89 (1998).Google Scholar
[7] Khaselev, O., Turner, J. A., Science 280, 425 (1998).Google Scholar
[8] Ghosh, A.K., Maruska, H.P., J. Electrochem. Soc. 124, 1516 (1977).Google Scholar
[9] Choi, W., Termin, A. and Hoffmann, M.R., J. Phys. Chem. 98, 13669 (1994).Google Scholar
[10] Breckenridge, R.G. and Hosler, W.R., Phys. Rev. 91, 793 (1953).Google Scholar
[11] Cronemeyer, D.C., Phys. Rev. 113, 1222 (1959).Google Scholar
[12] Ihara, T., Miyoshi, M., Ando, M., Sugihara, S. and Iriyama, Y., J. Mat. Sci. 36, 4201(2001).Google Scholar
[13] Sakata, T. and Kawai, T., “Energy Resources Through Photochemistry and Catalysis”, Gratzel, M., ed. (Academic Press, New York, 1983) 332358.Google Scholar
[14] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Science 293, 269 (2001).Google Scholar
[15] Weng, Y., Wang, Y., Asbury, J.B., Ghosh, H.N. and Lian, T., J. Phys. Chem. B 104, 93 (2000).Google Scholar
[16] (a) Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J. and Gole, J.L., Nano Lett. 3, 1049, (2003). (b) J.L. Gole, J. Stout, C. Burda, Y. Lou and X. Chen, J. Phys. Chem., in press.Google Scholar
[17] Prokes, S.M., Carlos, W.E., Lenward Seals and James Gole, Materials Lett. 54, 85 (2002).Google Scholar
[18] Brevet, A., Fabreguette, F., Imhoff, L., Lucas, M.cC. Marco de, Heints, O., Saviot, L., Sacilotti, M. and Bourgeois, S., Surfaces and Coatings Technol. 151–152, 36 (2002).Google Scholar
[19] Gyorgy, E., Pino, A. Perez del, Serra, P. and Moreza, J.L., Appl. Surf. Science 186, 130 (2002).Google Scholar
[20] Prokes, S.M., Carlos, W.E., Gole, James L., She, Chunxing and Lian, T., MRS Proceedings v. 738, 2003, 239.Google Scholar
[21] Nakaoka, Y. and Nosaka, Y., J. Photochemistry and Photobiology A: Chemistry 110, 299 (1997).Google Scholar
[22] Howe, R.F. and Gratzel, M., J. Phys. Chem. 91, 3906 (1987).Google Scholar
[23] Micic, O.I., Zhang, Y., Cromack, K.R., Trifunac, A.D. and Thurnauer, M.C., J. Phys. Chem. 97, 7277 (1993).Google Scholar
[24] Hirakawa, T., Kominami, H., Ohtani, B. and Nosaka, Y., J. Phys. Chem. B 105, 6993 (2001).Google Scholar
[25] Skuja, L.N. and Silin, A.R., Phys. Stat. Solidi A56, K11 (1979).Google Scholar
[26] Prokes, S.M. and Glembocki, O.J., Phys. Rev. B 51, (1995) 11183.Google Scholar
[27] Prokes, S.M. and Carlos, W.E., J. Appl. Phys. 78, 2671 (1995).Google Scholar
[28] Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar