Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-30T16:42:50.500Z Has data issue: false hasContentIssue false

Defect Engineering in CCD Image Sensors

Published online by Cambridge University Press:  01 February 2011

William C. McColgin
Affiliation:
Digital and Applied Imaging, Image Sensor Solutions, Eastman Kodak Company Rochester, NY 14650-2008 U.S.A.
Lingadahalli G. Shantharama
Affiliation:
Electronic Imaging Materials, Hard Copy and Display Technology Division, Eastman Kodak Company Rochester, NY 14650-2015 U.S.A.
James P. Lavine
Affiliation:
Digital and Applied Imaging, Image Sensor Solutions, Eastman Kodak Company Rochester, NY 14650-2008 U.S.A.
Get access

Abstract

Defect engineering principles are integral to the design and manufacture of high-quality CCD image sensors. As examples, we describe the use of epitaxial silicon for defect control, hydrogen passivation of interface defects, and several forms of impurity gettering. The high sensitivity of image sensors to contaminants reveals that boron segregation gettering of iron dominates gettering by oxygen precipitates for both fast and slow cooling cycles. We estimate that the gettering efficiency for iron is 99.95%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McGrath, R.D., Doty, J., Lupino, G., Ricker, G., Vallerga, J., IEEE Trans. Electron Devices ED-34, 2555 (1987)Google Scholar
2. McColgin, W.C. Lavine, J.P., Stancampiano, C.V., and Russell, J.B., in Defect and Impurity Engineered Semiconductors and Devices II, edited by Ashok, S., Chevallier, J., Sumino, K., Sopori, B.L., and Götz, W. (Mater. Res. Soc. Symp. Proc. 510, Pittsburgh, PA, 1998) pp. 475480.Google Scholar
4. McColgin, W.C., Lavine, J.P., and Stancampiano, C.V., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N.M., and Sopori, B.L. (Mater. Res. Soc. Symp. Proc. 378, Pittsburgh, PA, 1995) pp. 713724.Google Scholar
5. McColgin, W.C., Lavine, J.P., Kyan, J., Nichols, D.N., and Stancampiano, C.V., Tech. Dig. of the IEDM, 113(1992).Google Scholar
6. McColgin, W.C., Lavine, J.P., and Stancampiano, C.V. in Defects in Electronic Materials II, edited by Michel, J., Kennedy, T., Wada, K., and Thonke, K. (Mater. Res. Soc. Proc. 442, Pittsburgh, PA, 1997) pp. 187192.Google Scholar
7. Aoki, M., Itakura, T., and Sasaki, N., Appl. Phys. Lett. 66, 2709 (1995)Google Scholar
8. Myers, S.M., Seibt, M., and Schröter, W., J. Appl. Phys. 88, 3795 (2000)Google Scholar
9. Istratov, A.A., Hieslmair, H., and Weber, E.R., Appl. Phys. A 70, 489 (2000)Google Scholar
10. Weber, E.R. and Gilles, D., in Semiconductor Silicon, edited by Huff, H.R., Barraclough, K.G., and Chikawa, J.-I., (Electrochem. Soc. Proceed. 90-7, Pennington, NJ, 1990), pp. 585600.Google Scholar
11. Lin, W., Benton, J.L., Pinacho, R., Ramappa, D.A., and Henley, W., Appl. Phys. Let. 77, 24 (2000)Google Scholar
12. Hieslmair, H., Istratov, A.A., and Weber, E.R., Semicond. Sci. Technol. 13, 1401 (1998)Google Scholar
13. Istratov, A.A., Hieslmair, H., and Weber, E.R., Appl. Phys. A 69, 13 (1999)Google Scholar
14. Kosman, S.L., Stevens, E.G., Cassidy, J.C., Chang, W.C., Roselle, P., Miller, W.A., Mehra, M., Burkey, B.C., Lee, T.H., Hawkins, G.A., and Khosla, R.P., Tech. Dig. of the IEDM, 287(1990).Google Scholar
15. Plummer, James D., Deal, Michael D., and Griffin, Peter B., “Silicon VLSI Technology”, (Prentice Hall, Upper Saddle River, NJ, 2000) pp. 352357.Google Scholar
16. Aoki, M., Hara, A., and Ohsawa, A., J. Appl. Phys. 72, 895 (1992)Google Scholar
17. Aoki, M. and Hara, A., J. Appl. Phys. 74, 1440 (1993).Google Scholar
18. Ramappa, D.A. and Henley, W.B., J. Electrochem. Soc., 144, 4353 (1997)Google Scholar