Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:07:01.760Z Has data issue: false hasContentIssue false

Defect Creation by Electronic Processes in MgO Bombarded with GeV Heavy Ions

Published online by Cambridge University Press:  21 February 2011

M. Beranger
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard, LYON I, 69622 VILLEURBANNE Cedex, France
P. Thevenard
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard, LYON I, 69622 VILLEURBANNE Cedex, France
R. Bremer
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard, LYON I, 69622 VILLEURBANNE Cedex, France
E. Balanzat
Affiliation:
Centre Interdisciplinaire de Recherches avec les Ions Lourds, 14040 CAEN Cedex, France
Get access

Abstract

To study the defect creation induced by electronic processes in refractory oxides, MgO single crystals were irradiated with high energy tin, uranium and lead ions. Optical absorption measurements showed that F-type centers (oxygen vacancies with trapped electrons) were created during irradiation. The total number of centers per unit area of bombarded sample increases linearly with irradiating fluence. The main part of the point defects was found to arise from electronic processes. The concentration of F-type centers induced by ionization increases with the electronic energy losses. Assuming a saturation of point defect concentration at high fluences, F-type center creation cross sections could be estimated. The influence of irradiation temperature and of the velocity of the bombarding ions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dirnberger, L., Dyer, P.E., Farrar, S., Key, P.H., Monk, P., Appl. Surf. Sci. 69, p. 216 (1993).Google Scholar
2 Webb, R.L., Jensen, L.C., Langford, S.L., Dickinson, J.T., J. Appl. Phys. 74 (4), p. 2,323 (1993).Google Scholar
3 Boatner, L.A., Rankin, J., Romana, L., Thevenard, P., Gilmore, D.J., Mater. Res. Soc. Proc, San Francisco (1992)Google Scholar
4 Brenier, R., Canut, B., Gea, L., Ramos, S.M.M., Thevenard, P., Rankin, J., Romana, L., Boatner, L.A., Nucl. Instr. Meth. Phys. Res. B80/81, p. 1,210 (1993).Google Scholar
5 Averback, R.S., Ehrhart, P., Popov, A.I., Sambeck, A.V., Rad. Eff. Defects Sol. 133–134, (1995).Google Scholar
6 Beranger, M., Brenier, R., Canut, B., Canut, S.M.M., Thevenard, P., Balanzat, E., Toulemonde, M., to be published in Nucl. Instr. Meth. Phys. Res. B (1996).Google Scholar
7 Parkin, D.M., in Structure property relationships in surface modified ceramics, edited by McHargue, C.J., Kossowsky, R. and Hofer, W.O. (NATO ASI SeriesE170, Dordrecht, 1989) p 47.Google Scholar
8 Sonder, E., Sibley, W.A. in Point defects in solids, edited by Crawford, J.H. and Slifkin, L.M. (Plenum Press, New York-London, 1972) p. 269.Google Scholar
9 Evans, B.D., Comas, J., Malmberg, P.R., Phys. Rev. B 6(6), p. 2,453 (1972).Google Scholar
10 Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Meth. 174, p. 257 (1980).Google Scholar
11 Thevenard, P., in Structure and property relations in ion beam surface modified ceramics -Theory and Practice, edited by Mc Hargue, C. (Kluwer, Acad. Publ., 1989) pp. 125.Google Scholar
12 Canut, B., Brenier, R., Meftah, A., Moretti, P., Ould Salem, S., Ramos, S.M.M., Thevenard, P., Toulemonde, M., Nucl. Instr. Meth. Phys. Res. B91, p. 312 (1994).Google Scholar
13 Canut, B., Benyagoub, A., Marest, G., Moncoffre, N., Ramos, S.M.M, Studer, F., Thevenard, P., Toulemonde, M., Phys. Rev. B51(18), p 12,194 (1995)Google Scholar