Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T05:05:35.036Z Has data issue: false hasContentIssue false

Defect Cluster Formation in High Energy Displacement Cascades in Copper

Published online by Cambridge University Press:  21 March 2011

Yuri N. Osetsky
Affiliation:
Materials Science and Engineering, Department of Engineering, The University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK
David J. Bacon
Affiliation:
Materials Science and Engineering, Department of Engineering, The University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK
Get access

Abstract

Primary radiation damage in displacement cascades in metals has been studied extensively by atomistic simulation during the last decade. The variety of defect types observed in cascade simulation is not entirely consistent with experimental data. For example, experiments on copper show a very effective production of stacking fault tetrahedra (SFTs) but this was not observed systematically in cascade simulation. To clarify this and related issues, extensive simulation of displacement cascades in copper have been performed using two different interatomic potentials, a short-range many-body potential and a long-range pair potential. We have studied the damage created by primary knock-on-atoms of energy up to 20keV, i.e. below the energy range for formation of subcascades, at temperatures 100 and 600K. Special attention was paid to cascade statistics and the accuracy of simulation in the collision stage. The former required many simulations for each temperature whereas the latter involved a modification of the simulation method. The results on variety of clusters observed, e.g. SFTs, glissile and sessile interstitial clusters, and faulted and perfect interstitial dislocation loops, lead to conclusions on the effect of the potentials and the significant variation of the number of Frenkel pairs and clustering effects produced in different cascades under the same conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rubia, T. Diaz de la, Guinan, M.W., Caro, A., Rad. Eff. and Def. Sol. 131, (1994) 39.Google Scholar
[2] Bacon, D.J., Calder, A.F., Gao, F., Kapinos, V.G., Wooding, S.J., Nucl. Inst. and Meth. B 102, (1995) 37.Google Scholar
[3] Bacon, D.J., Calder, A.F., Gao, F., Rad. Eff. and Def. Sol. 141, (1997) 283.Google Scholar
[4] Bacon, D.J., Gao, F., Osetsky, Yu.N., Nucl. Inst. and Meth. B 153, (1999) 87.Google Scholar
[5] Singh, B.N., Golubov, S.I., Trinkaus, H., Serra, A., Osetsky, Yu.N., Barashev, A.V., J. Nucl. Mater., 251, (1997) 107; S.I.Golubov, B.N.Singh, H.Trinkaus, Ibid, 276 (2000) 78.Google Scholar
[6] Kiritani, M., Yoshie, T., Kojima, S., J. Nucl. Mater., 141–143, (1986) 625; A.Calder, D.J.Bacon, W.J.Phythian, C.A.English, Mater. Sci. Forum 97-99 (1992) 183; T.L.Daulton, M.A.Kirk, L.E.Rehn, Philos. Mag. 80 (2000) 809.Google Scholar
[7] Matthai, C.C., Bacon, D.J., J. Nucl. Mater., 135, (1985) 173; V.G.Kapinos, Yu.N.Osetsky, P.A.Platonov, Soviet. Phys. Solid. Stat., 28 (1986) 3603; J. Nucl. Mater., 165 (1989) 286.Google Scholar
[8] Osetsky, Yu.N., Victoria, M., Serra, A., Golubov, S.I., Priego, V., J. Nucl. Mater., 251, (1997) 34.Google Scholar
[9] Nordlund, K., Gao, F., Appl. Phys. Lett., 74, (1999) 2720.Google Scholar
[10] Ackland, G.J., Tichy, G., Vitek, V., Finnis, M.W., Philos. Mag. A, 56, (1987) 735.Google Scholar
[11] Osetsky, Yu.N., Mikhin, A.G., Serra, A., Philos. Mag. A, 72, (1995) 361.Google Scholar
[12] Osetsky, Yu.N., Serra, A., Victoria, M., Golubov, S.I., Priego, V., Philos. Mag. A, 79, (1999) 2259; Ibid, 2284.Google Scholar
[13] Biersack, J.P., Nucl. Inst. and Meth. B, 27, (1987) 21.Google Scholar
[14] Phythian, W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F., Bacon, D.J., J. Nucl. Mater., 223, (1995) 245.Google Scholar
[15] Nordlund, K., Ghaly, M., Averback, R.S., JCaturla, M., Rubia, T. Diaz de la, Tarus, J., Phys. Rev. B, 57, (1998) 7556.Google Scholar
[16] Stoller, R.E., J.Nucl. Mater., 276, (2000) 22.Google Scholar
[17] Alonso, E., Caturla, M.J., Rubia, T. Diaz de la, Perlado, J.M., J. Nucl. Mater., 276, (2000) 221.Google Scholar
[18] Bacon, D.J., Gao, F., Osetsky, Yu.N., J. Nucl. Mater., 276, (2000) 1.Google Scholar
[19] Osetsky, Yu.N., Serra, A., Priego, V., Mat. Res. Soc. Symp. Proc., 527, (1998) 59; Yu.N. Osetsky, D.J. Bacon, A.Serra, Ibid 538 (1999) 649; Yu.N.Osetsky, D.J. Bacon, A.Serra, Philos. Mag. Lett., 79 (1999) 273.Google Scholar
[20] Osetsky, Yu.N., Bacon, D.J., Serra, A., Singh, B.N., Golubov, S.I., J. Nucl. Mater., 276, (2000) 65; Yu.N.Osetsky, V.Priego, A.Serra, B.Singh, S.I.Golubov, Philos. Mag., A 80 (2000) 2131.Google Scholar
[21] Gao, F., Bacon, D.J., Osetsky, Yu.N., J. Nucl. Mater., 276, (2000) 213.Google Scholar
[22] Jenkins, M.L., Philos. Mag. 29, (1984) 813; M.L.Jenkins and M.A.Kirk, Characterization of Radiation Damage by Transmission Electron Microscopy, Institute of Physics 2000, p. 58.Google Scholar
[23] Silcox, J. andHirsch, P.B., Philos. Mag., 4, (1959) 72.Google Scholar