Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T10:19:04.507Z Has data issue: false hasContentIssue false

Deep Level Characterization of LP-MOCVD Grown Al0.48In0.52As

Published online by Cambridge University Press:  22 February 2011

F. Ducroquet
Affiliation:
Laboratoire de Physique de la Matière (URA CNRS 358), INSA-LYON, bât 502, 69621 Villeurbanne cedex, France
G. Guillot
Affiliation:
Laboratoire de Physique de la Matière (URA CNRS 358), INSA-LYON, bât 502, 69621 Villeurbanne cedex, France
K. Hong
Affiliation:
Solid-State Electronics Laboratory, The University of Michigan, Beal avenue, Ann Arbor, MI 48109-2122, USA
C.H. Hong
Affiliation:
Solid-State Electronics Laboratory, The University of Michigan, Beal avenue, Ann Arbor, MI 48109-2122, USA
D. Pavlidis
Affiliation:
Solid-State Electronics Laboratory, The University of Michigan, Beal avenue, Ann Arbor, MI 48109-2122, USA
M. Gauneau
Affiliation:
CNET - France-Telecom, 22301 Lannion cedex, France
Get access

Abstract

Deep levels in unintentionally doped A10. 48In0.52As layers epitaxially grown on InP substrates by low-pressure MOCVD have been investigated as a function of growth temperature (Tg ranging from 570 to 690°C). Two different origins for the residual carrier concentration are deduced depending on Tg: i) low growth temperatures favor the creation of a deep donor located at Ec-(0.13±0.04)eV; ii) At higher Tg, a preferential incorporation of a shallow donor occurs, which can be attributed to silicon by SIMS measurements. The oxygen contamination deduced by SIMS and the electrical characteristics of the AlInAs layers do not appear to be correlated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pavlidis, D., Materials Science on Engineering, B20, 18 (1993).Google Scholar
2 Kwon, Y., Pavlidis, D., Brock, T., Ng, G.I., Tan, K.L., Velebir, J.R. and Streit, D.C., Proc. of the 5th Int. Conf. on hiP and Related Materials, 465 (1993).Google Scholar
3 Hong, W.P., Bhattacharya, P.K., and Singh, J., Appl. Phys. Lett, 50, 618 (1987).Google Scholar
4 Macrander, A.T., Hsieh, S.J., Ren, F., and Patel, J.S., J. Crystal Growth, 92, 83 (1988).CrossRefGoogle Scholar
5 Hoenow, H., Bach, H.G., Böttcher, J., Gueissaz, F., Künzel, H., Scheffer, F. and Schramm, C., Proceedings of the 4th Int. Conf. on InP and Related Materials, Newport (RI), 136 (1992).Google Scholar
6 Aina, L., Mattingly, M., Serio, M. and Martin, E., J. Crystal Growth, 107, 932 (1991).Google Scholar
7 Ng, G.I., Pavlidis, D., Kwon, Y., Brock, T., Davies, J.I., Clarice, G. and Rees, P.K., Proc. of the 4th Int. Conf. on InP and Related Materials, 18 (1992).Google Scholar
8 Jeong, Y.H., Jeong, D.H., Hong, W.P., Caneau, C., Bhat, R., and Hayes, J.R., Jpn. J. Appl. Phys., 31, L66 (1992).CrossRefGoogle Scholar
9 Bhat, R., Koza, M.A., Kash, K., Allen, S.J., Hong, W.P., Schwarz, S.A., Chang, G.K., and Lin, P., J. Crystal Growth, 108, 441 (1991).Google Scholar
10 Kamada, M., Ishikawa, H., Miwa, S. and Stillman, G.E., J. Appl. Phys., 73, n°8, 4004 (1993).CrossRefGoogle Scholar
11 Gyuro, I., Kuebart, W., Reemtsma, J.K., Großopf, H., Grotjahn, F., Kaiser, D., Buchali, F., Proceedings of the MOVPE conference, Malmöe, (1993).Google Scholar
12 Naritsuka, S., Noda, T., Wagai, A., Fujita, S. and Ashizawa, Y., J. Crystal Growth, 131,186 (1993).Google Scholar
13 Luo, J.K., Thomas, H., Clark, S.A. and Williams, R.H., J. Appl. Phys., 74, n°11, 6726 (1993).Google Scholar
14 Hong, K., Pavlidis, D., Kwon, Y. and Hong, C.H, Proc. of the 6th Int. Conf. on InP and Related Materials, (1994).Google Scholar
15 Losee, D.L., J. Appl. Phys., 46, 2204 (1975).Google Scholar
16 Miller, G.L., Lang, D.V., Kimmerling, L.C., Ann. Rev. Mater. sci., 377 (1977).Google Scholar
17 Luo, J.K. and Thomas, H., Proceedings of the 5th Int. Conf. on InP and Related Materials, Paris, 175 (1993).Google Scholar