Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:11:12.922Z Has data issue: false hasContentIssue false

Deactivation of Alumina Supported Catalysts Due to Spinel Formation

Published online by Cambridge University Press:  15 February 2011

P. H. Bolt
Affiliation:
Debye Institute, Utrecht University Department of Atomic and Interface Physics, P.O. Box 80000, 3508 TA Utrecht, the Netherlands Department of Inorganic Chemistry, P.O. Box 80083, 3508 TB Utrecht, the Netherlands
M. E. Van Ipenburg
Affiliation:
Debye Institute, Utrecht University Department of Atomic and Interface Physics, P.O. Box 80000, 3508 TA Utrecht, the Netherlands
J. W. Geus
Affiliation:
Debye Institute, Utrecht University Department of Inorganic Chemistry, P.O. Box 80083, 3508 TB Utrecht, the Netherlands
F. H. P. M. Habraken
Affiliation:
Debye Institute, Utrecht University Department of Atomic and Interface Physics, P.O. Box 80000, 3508 TA Utrecht, the Netherlands
Get access

Abstract

An important cause of deactivation of alumina supported transition metal (oxide) catalysts is a solid state reaction between the active component and the support. We therefore studied the hightemperature behavior of Me layers (Me = Co, Ni, Cu and Fe) on polycrystalline α-A12O3 and γ- Al2O3 substrates. The samples were first oxidized at moderate temperatures and then annealed at high temperatures (up to 1000 °C) in O2, N2, or N2/O2 mixtures. The interfacial reaction to MeA12O4 was assessed using Rutherford Backscattering Spectrometry and X-ray diffraction. The reaction rate strongly depends on the transition metal element Me: Fe < Ni < Co < Cu. Low oxygen pressures favour spinel formation. γ-A12O3 shows a much higher reactivity towards the MeOx overlayers than α-Al2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rostrup-Nielsen, J.R., in Catalysis - Science and Technology, Vol.5, edited by Anderson, J.R. and Boudart, M. (Springer-Verlag,Berlin, 1984), p. 1.Google Scholar
2. Vaishnava, P.P., Ktorides, P.I., Montano, P.A., Mbadcam, K.J. and Melson, G.A., J. Catal. 96, 301 (1985).Google Scholar
3. Wang, W.-J. and Chen, Y.-W., Appl. Catal. 77, 223 (1991).Google Scholar
4. Ramaswamy, A.V., Sharma, L.D., Singh, A., Singhal, M.L. and Sivasanker, S., Appl. Catal. 13, 311 (1985).Google Scholar
5. Tijburg, I.I.M., PhD thesis, Utrecht University, 1989.Google Scholar
6. Amoldy, P. and Moulijn, J.A., J. Catal. 93, 38 (1985).Google Scholar
7. Burggraf, L.W., Leyden, D.E., Chin, R.L. and Hercules, D,M, J. Catal. 78, 360 (1982).Google Scholar
8. Chernavskii, P.A. and Lunin, V.V., Kinet. Catal. 34, 470 (1993).Google Scholar
9. Gavalas, G.R., Phichitkul, C. and Voecks, G.E., J. Catal. 88, 54 (1984).Google Scholar
10. Rynkowski, J.M., Paryjczak, T. and Lenik, M., Appl. Catal. A 106, 73 (1993).Google Scholar
11. de Roos, G., de Wit, J.H.W., Fluit, J.M., Geus, J.W. and Velthuizen, R.P., Surface and Interface Analysis 5, 119 (1983).Google Scholar
12. Bolt, P.H., Lobner, S.F., van den Bout, T.P., Geus, J.W. and Habraken, F.H.P.M., Appl. Surf. Sci. 70/71, 196 (1993).Google Scholar
13. Schmalzried, H., Z. Phys. Chem. (NF) 28, 203 (1961).Google Scholar
14. Meyers, C.E., Mason, T.O., Petusky, W.T., Hallocan, J.W. and Bowen, H.K., J. Am. Ceram. Soc. 63, 659 (1980).Google Scholar
15. Ren-Yuan, T., Su, Z., Chengya, W., Dongbai, L. and Liwu, L., J. Catal. 106, 440 (1987).Google Scholar