Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T14:28:29.340Z Has data issue: false hasContentIssue false

Damage-Free Photo-Assisted Cryogenic Etching of GaN as Evidenced by Reduction of Yellow Luminescence

Published online by Cambridge University Press:  10 February 2011

J. T. Hsieh
Affiliation:
Institute of Electronic Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan, R.O.C.
J. M. Hwang
Affiliation:
Institute of Electronic Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan, R.O.C.
H. L. Hwang
Affiliation:
Institute of Electronic Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan, R.O.C.
W. H. Hung
Affiliation:
Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan, R.O.C.
Get access

Abstract

Damage-free etching of GaN by Cl2, assisted by an ArF (193 nrm) excimer laser, is demonstrated. At low temperatures, photo-assisted etching can provide a better etch rate and largely improve the surface morphology and quality. AFM results show that the etched GaN surface is obtained with a root-mean-square roughness of 1.7 nm. As compared with the photoluminescence spectra of photoelectrochemical wet etched GaN, the photo-assisted cryogenic etching is proved to be a damage-free dry etching technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ping, A. T., Schmitz, A. C., Khan, M. Asif and Adesida, I., J. Electronic Materials 25, 825 (1996).Google Scholar
[2] Pearton, S. J., Vartuli, C. B., Shul, R. J. and Zolper, J. C., Mater. Sci. Eng. B31, 309 (1995).Google Scholar
[3] Cho, H., Vartuli, C. B., Donovan, S. M., Mackenzie, J. D., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Constantine, C., J. Electronic Material 27, 166 (1998).Google Scholar
[4] Shih, M. C., Freiler, M. B., Scarmozzino, R. and Osgood, R. M. Jr, J. Vac. Sci. Technol. B13, 43 (1995).Google Scholar
[5] Leonard, R. T. and Bedair, S. M., Appl. Phys. Lett. 68, 794 (1996).Google Scholar
[6] Lide, D. R., CRC Handbook of Chemistry and Physics (Boca Raton: CRC press, 1992), p. 9129.Google Scholar
[7] Neugebauer, J. and Walle, C. G. Van De, Appl. Phys. Lett. 69, 503 (1996).Google Scholar
[8] Minsky, M. S., White, M., and Hu, E. L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
[9] Youtsey, C., Adesida, I. and Bulman, G., Appl. Phys. Lett. 71, 2151 (1997).Google Scholar
[10] Shul, R. J., McClellan, G. B., Pearton, S. J., Aberbathy, C. R., Constantine, C. and Barratt, C., Electronics Letters, 32, 1408 (1996).Google Scholar
[11] Cho, H., Hong, J., Maeda, T., Donovan, S. M., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Han, J., MRS Internet J. Nitride Semicond. Res. 3, 5 (1998).Google Scholar
[12] Youtsey, C., Romano, L. T. and Adesida, I., Appl. Phys. Lett. 73, 797 (1998).Google Scholar