Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T16:47:55.309Z Has data issue: false hasContentIssue false

Damage Evolution and Mechanical Failure in Flip-chip Interconnects

Published online by Cambridge University Press:  10 February 2011

A. Soperm
Affiliation:
LTPCM, CNRS-INPG/UJF BP. 75, 38402 Saint Martin d'Hères - France
I. De Wolf
Affiliation:
IMEC Kapeldreef 75 B 3001 Leuven - Belgium
G. Pozza
Affiliation:
LTPCM, CNRS-INPG/UJF BP. 75, 38402 Saint Martin d'Hères - France
M. Ignat
Affiliation:
LTPCM, CNRS-INPG/UJF BP. 75, 38402 Saint Martin d'Hères - France
G. Parat
Affiliation:
LETI-CEA, 17 Av. des Martyrs, 38054 Grenoble - France
Get access

Abstract

The analysis of the mechanical behaviour of flip-chip interconections is an essential aspect of the reliability of the devices using this technique. When manufacturing them and during their operation, the interconective systems are submitted to thermal and mechanically induced stresses. By cyclic micromechanical testing and from analysis by micro Raman of singularities, we studied the mechanical response and the failure of samples, consisting of a substrate, the interconections and a chip.

Two sort of low melting point alloys were investigated, with different metallurgies for the pads, holding the interconections.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Satoh, R., Arakawa, K., Harada, M., Matsui, K., IEEE Trans. CHMT 14, p. 224232, (1991).Google Scholar
2. Frear, D. R., Grivas, D., Morris, J. W., J. Electron. Mats. 17, p. 171180 (1988).Google Scholar
3. Goldman, L. S., Herdzik, R. D., Koopman, N. G., Marcotte, V. C., IEEE Trans PHP, 13, p. 194201, 3 (1997).Google Scholar
4. Pozza, G., Parat, G., Ignat, M., Dupeux, M., Terriez, J. M., Mater. Res. Soc. Symp. Proc. Electron Pack. Mater. Sci. VIII 390, 1995, pp. 153159.Google Scholar
5. Soper, A., Doctéur Ingdnieur Thesis, INP Grenoble 1997.Google Scholar
6. Wolf, I. De, Semicond. Sci. Technol. 11, p. 139156 (1996).Google Scholar
7. Wolf, I. De, Maes, H. E., Jones, S. K., J. Appl. Phys 79, p. 71487155, 9 (1996).Google Scholar
8. Lemaître, J., Chaboche, J. L., Mécanique des Matériaux Solides, Editions Dunod, Paris, 1985.Google Scholar
9. Rabbe, P. in La fatigue des matériaux et des structures, edited by Bathias, C. and Bailon, J. P. Ed. Maloine S.A. Paris 1980.Google Scholar
10. Suresh, S. in Fatigue of Materials, edited by Cambridge Univ. Press. U.K., 1991.Google Scholar
11. Darveaux, R., Banerji, K., IEEE Trans. CHMT 15, p.10131024, 6 (1992).Google Scholar
12. Weinbel, R. C., Tien, J. K., Pollak, R. A., Kang, S. K., J. Mater. Sci., 22, p. 39013906, 11 (1987).Google Scholar
13. Chouaf, A., Lopin, G., Igat, M., Terriez, J. M., Mat. Res. Soc. Symp. Proc., 309, p.211216 (1993).Google Scholar
14. Wolf, I. De, Pozza, G., Pinardi, K., Howard, D. J., Ignat, M., Jain, S. C., H.E. Maes, Microelectron Reliab. 36, p. 17511754, N°11/12 (1996).Google Scholar