Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:54:12.412Z Has data issue: false hasContentIssue false

Cure Studies of Fluorinated Polyamic Acids by Thermal-IR

Published online by Cambridge University Press:  15 February 2011

Robert T. Roginski
Affiliation:
Amoco Corporation, Analytical Research and Services, Naperville, IL.
Douglas E. Fjare
Affiliation:
Amoco Chemical Company, Ultradel Microelectronic Coating Dept., Naperville, IL
Get access

Abstract

The thermal curing chemistry of a fluorinated polyamic acid based on 6FDA (hexafluoroisopropylidene bis(phthalic anhydride)) and APBP (4,4′-bis(4-aminophenoxy)biphenyl) was studied by thermal-IR spectroscopy. Anhydride formation was observed at intermediate cure temperatures and maximized at approximately 220°C. The degree of anhydride formation was affected by the solvent, being least in 2-methoxyethyl ether and increasing in the solvent order: 2-methoxyethyl ether < NMP < 2-(2-ethoxy)ethoxyethanol. In addition to the back reaction of amic acid to anhydride and amine, at least one additional mechanism of anhydride formation is observed. The onset of the second mechanism of anhydride formation is coincident with the onset of imidization, which leads us to propose that water generated by imidization can react with anhydride during the curing process, before escaping from the film, to form diacid. Cyclization of diacid to anhydride is proposed as the second mechanism of anhydride formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brekner, M. J. and Feger, C., J. Polym. Sci. A 25, 2005 (1987).Google Scholar
Brekner, M. J. and Feger, C., J. Polym. Sci. A 25, 2479 (1987).Google Scholar
Stepanov, N. G., Shibaev, L. A., and Sazanov, Yu. N., J. Thermal Anal. 36, 559 (1990).CrossRefGoogle Scholar
Marek, M., Schmide, P., and Schneider, B., Makromol. Chem. 191, 2631 (1990).Google Scholar
Buncick, M. C. and Denton, D. D., J. Vac. Sci. Technol. A 9, 350 (1991).Google Scholar
2. Pryde, C. A., J. Polym. Sci. A 27, 711 (1989).Google Scholar
Snyder, R. W., Thomson, B., Bartges, B., Czerniawski, D., and Painter, P. C., Macromolecules 22, 4166 (1989).Google Scholar
Young, P. R., Davis, J. R. J., Chang, A. C., and Richardson, J. R., J. Polym. Sci. A 28, 3107 (1990).Google Scholar
3. Walker, C. C., J. Polym. Sci. A 26, 1649 (1988).Google Scholar
Miwa, T. and Numata, S., Polymer 30, 893 (1989).Google Scholar
Kreuz, J. A., J. Polym. Sci., Polym. Chem. Ed. 28, 3787 (1990).Google Scholar
4. Nerheim, A. G., in Fourier Transform Infrared Spectroscopy, Vol.4, Ed. Ferraro, J. R. and Basile, L. J. (Academic Press, NY, 1985)Google Scholar
5. Parker, S. F., Hoyle, N. D., and Walton, J. R., High Perform. Polym. 2, 267 (1990).Google Scholar
Snyder, R. W. in Proc. 3rd Int. Conf. Polyimides, ed. Feger, C., Khojasteh, M. M., and McGrath, J. E. (Elsevier, Amsterdam, 1989), p. 363.Google Scholar
Snyder, R. W. and Painter, P. C., ACS Symp. Ser. 407 (Polym. Mater. Electron. Packag. Interconnect), 49 (1989).Google Scholar
Snyder, R. W. and Painter, P. C., Polym. Mater. Sci. Eng. 59, 57 (1988).Google Scholar
Young, P. R., Druy, M. A., Stevenson, W. A., and Compton, D. A. C., Int. SAMPE Tech. Conf. 20, 336 (1988).Google Scholar
Snyder, R. W. and Sheen, C. W., Appl. Spectrosc. 42, 655 (1988).Google Scholar
Snyder, R. W., Thomson, B., Park, Y., Bartges, B., Czerniawski, D., and Painter, P. C., Polym. Prepr. 29, 317 (1988).Google Scholar
Tung, C. M., Polym. Prepr. 28, 7 (1987).Google Scholar
Baise, A. I., J. Appl. Polym. Sci. 32, 4043 (1986).Google Scholar
Ginsburg, R. and Susko, J. R. in Polyimides: Synthesis. Characterization and Applications, ed. Mittal, K. L. Plenum, NY, 1984, p. 237.Google Scholar
Fountain, R. and Haas, T. W., J. Appl. Polym. Sci. 19, 1767 (1975).Google Scholar
Snyder, R. W., Sheen, C. W., and Painter, P. C., Appl. Spectrosc. 42, 503 (1988).Google Scholar
Krasovskii, A. N., Antonov, N. P., Koton, M. M., Kalnins, K., and Kudryavtsev, V. V., Vysokomol. Soedin., Ser. A 21, 945 (1979).Google Scholar
6. Snyder, R. W., Sheen, C. W., and Painter, P. C., in Polym. Matl. Elec. Packaging and High Tech. Appl. (The Electrochemical Society, Pennington, NJ, 1988), p. 71.Google Scholar
7. Colthup, N. B., Daly, L. H., and Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy, 3rd ed. (Academic Press, New York, 1990), p. 268.Google Scholar
8. Bhagwagar, D. E., Painter, P. C., Coleman, M. M., and Krizan, T. D., J. Polymer Sci. B 29, 1547 (1991).Google Scholar
9. Molis, S. E. in Polyimides: Materials. Chemistry, and Characterization (Proceedings 3rd International Conference on Polyimides), eds. Feger, C., Khojasteh, M. M., and McGrath, J. E., (Elsevier, Amsterdam, 1989), p. 659.Google Scholar
10. Fjare, D. E., submitted for publication.Google Scholar
Ree, M., Yoon, D. Y., and Volksen, W., J. Polymer Sci. B 29, 1203 (1991).Google Scholar