Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T04:46:30.238Z Has data issue: false hasContentIssue false

Crystalline Phases During the Melting of Bi2Sr2CaCu2OX

Published online by Cambridge University Press:  25 February 2011

Ming Xu
Affiliation:
Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
J. Polonka
Affiliation:
Department of Chemistry, Iowa State University, Ames, IA 50011
A. I. Goldman
Affiliation:
Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
D. K. Finnemore
Affiliation:
Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
Qiang Li
Affiliation:
Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
F. C. Laabs
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011
Get access

Abstract

The melting of Bi2Sr2CaCu2Ox material has been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) in order to study the phases that formed in the high temperature regions. Two distinct phases of (Sr1-xCax)CuO2 and (Sr1-xCax)2CuO3 have been observed in the Bi-rich matrix depending upon quenching temperatures. Crystallization from the melt by fast cooling usually produce the co-existence of Bi (2201) and these Sr-Ca-Cu-O phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. MAG 27, 1231 (1991).CrossRefGoogle Scholar
2. Kase, J., Tagano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L 1096 (1990); H. Kumakura, K. Tagano, H. Maeda, J. Kase, and T. Morimoto, Jpn. J. Appl. Phys. 29, L 1096 (1990).CrossRefGoogle Scholar
3. Li, Q., Ostenson, J. E., and Finnemore, D. K., J. Appl. Phys. (in press) (1991).Google Scholar
4. LeBeau, S. E., Righi, J., Sanders, S. C., Ostenson, J. E., and Finnemore, D. K., Appl. Phys. Lett. 58, 292 (1989).CrossRefGoogle Scholar
5. Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Oda, K., and Takana, J., Jpn. J. Appl. Phys. 28, L 213 (1989); Y. Oka, N. Yamamoto, H. Kitaguchi, K. Oda, and J. Takana, Jpn. J. Appl. Phys. 28, L 801 (1989).CrossRefGoogle Scholar
6. Matheis, D. P. and Snyder, R. L., and Hubbard, C. R., in Superconductivity and Its Applications, edited. Kao, Y.-H., Coppens, P., and Kwok, H.-S., AIP Conference Proceedings 219, Buffalo, New York, (1990).Google Scholar
7. Garbauskas, M. F., Arendt, R. H., Jorgenson, J. D., and Hitterman, R. L., Appl. Lett. 58, 2987 (1991).CrossRefGoogle Scholar
8. Polonka, J., Xu, M., Goldman, A. I., Finnemore, D. K., and Li, Q., Supercond. Sci. Technol. (in press) (1991); J. Polonka, M. Xu, Q. Li, D. K. Finnemore, and A. I. Goldman, Appl. Phys. Lett. (submitted) (1991).Google Scholar
9. Teske, G. L. and Muller-Buschbaum, H., Anorg, Z.. Allg. Chem. 371, 325 (1969); 379, 234 (1970).CrossRefGoogle Scholar
10. Breuer, K.-H., Eysel, W., and Behruzi, M., Z. Kristallogr. 176, 219 (1986).Google Scholar
11. Xu, M., Voiles, E. T., Chumbley, L. S., Goldman, A. I., and Finnemore, D. K., (preprint) (1991).Google Scholar
12. Gadalla, A. M. M. and White, J., Trans. Br. Ceram. Soc. 65, 181 (1966).Google Scholar