Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:02:16.224Z Has data issue: false hasContentIssue false

Crystal Structure and Texture Effects on Piezoelectric and Dielectric Properties of PZT Thin Films

Published online by Cambridge University Press:  10 February 2011

D. Damjanovic
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPFL, 1015 Lausanne, Switzerland, dragan.damjanovic@epfl.ch
D. V. Taylor
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPFL, 1015 Lausanne, Switzerland, dragan.damjanovic@epfl.ch
N. Setter
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPFL, 1015 Lausanne, Switzerland, dragan.damjanovic@epfl.ch
Get access

Abstract

A systematic investigation of the piezoelectric and dielectric properties of Pb(Zr1-xTix,)O3 (PZT) thin films fabricated by chemical solution deposition was carried out for rhombohedral (x= 0.40), tetragonal (x=0.55) and morphotropic (x=0.47) composition. Each composition was grown with three different crystallographic orientations (textures): “random”, (111) and (100). Nonlinearity (field dependence) of d33 piezoelectric coefficient and dielectric permittivity of the films was studied in detail under subswitching conditions to reveal domain-wall related contributions to the properties. After analyzing for each texture and composition the domain-wall structure, contributions due to domain-wall displacements, and effects of film clamping by the substrate a consistent interpretation of the electro-mechanical properties and nonlinear behavior was proposed. The (100) oriented rhombohedral films show the largest piezoelectric coefficient (intrinsic effect) but limited nonlinearity (domain-wall structure effect) and should therefore be considered as potential candidates for piezoelectric devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hiboux, S., Muralt, P., and Maeder, T., J. Mat. Res. 14, 43074318 (1999).Google Scholar
2 Taylor, D. V. and Damjanovic, D., Appl. Phys. Lett. 73, 20452047 (1998).Google Scholar
3 Taylor, D. V., Damjanovic, D., and Setter, N., Ferroelectrics 224, 299306 (1999).Google Scholar
4 Shepard, J. F., Trolier-McKinstry, S., Hendrickson, M. A., and Zeto, R., Proceedings of the 10th ISAF, Rutgers U., East Brunswick, NJ., 1996 (IEEE Service Center, Piscataway, NJ, USA), p. 161165.Google Scholar
5 Taylor, D. V., Brooks, K. G., Kholkin, A. L., Damjanovic, D., and Setter, N., in ELECTROCERAMICS V, International conference on electroceramics and applications; Vol. I, edited by Baptista, J. L., Labrincha, J. A., and Vilarinho, P. M. (1996), p. 341344.Google Scholar
6 Taylor, D. V., Ph. D. Thesis, No. 1949, Swiss Federal Institute of Technology- EPFL, 1999.Google Scholar
7 Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, , Xantopoulos, N., Mathieu, H. J., Patthey, L., and Bullock, E. L., J. Appl. Phys. 83, 38353841 (1998).Google Scholar
8 Harris, G. B., Phil. Mag. 43, 113123 (1952).Google Scholar
9 Damjanovic, D. and Demartin, M., J. Phys.: Condens. Matter 9, 49434953 (1997).Google Scholar
10 Zhang, X. L., Chen, Z. X., Cross, L. E., and Schulze, W. A., J. Mater. Sci. 18, 968972 (1983).Google Scholar
11 Lefki, K. and Dormans, G. J. M., J. Appl. Phys. 76, 17641767 (1994).Google Scholar
12 Du, X., Belegundu, U., and Uchino, K., Jpn. J. Appl. Phys. 36, 55805587 (1997).Google Scholar
13 Du, X.-H., Zheng, J., Belegundu, U., and Uchino, K., Appl. Phys. Lett. 72, 24212423 (1998).Google Scholar
14 Haun, M. J., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 6386 (1989).Google Scholar