Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T15:05:39.946Z Has data issue: false hasContentIssue false

Crystal Nucleation in Amorphous Si Thin Films During Ion Irradiation

Published online by Cambridge University Press:  21 February 2011

James S. Im
Affiliation:
Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Harry A. Atwater
Affiliation:
Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The nucleation and transformation kinetics of the amorphous-to-crystal transition in Si films under 1.5 MeV Xe+ irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T = 480–580°C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting homogeneous nucleation. A significant enhancement in nucleation rate during high energy ion irradiation (6 orders of magnitude) was observed as compared with thermal crystallization, with an apparent activation energy of Qn = 3.9 ± 0.75 eV. Independent analyses of the temperature dependence of the incubation time, the crystal growth rate, and nucleation rate suggest that interface rearrangement kinetics and not the thermodynamic barrier to crystallization, are affected by ion irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishiwara, H., Tamba, A., and Furukawa, S., Appl. Phys. Lett. 48, 773 (1986).Google Scholar
2. Kwizera, P. and Reif, R, Appl. Phys. Lett. 17, 586 (1981).Google Scholar
3. Russell, K., Journal of Prog. in Mater. Sci. Vol.28. 229 (1984).Google Scholar
4. Brown, W. L., Elliman, R. G., Knoell, R. V., Leibeerich, A., Linnros, J., Maher, D. M., and Williams, J. S., in Microscopy of Semiconductor Materials, edited by Cullis, A. G. (Institue of Physics, London, 1987), p. 6 1.Google Scholar
5. Linnros, J., Elliman, R. G., and Brown, W.L., J. Mater. Res., 3, 1209 (1988).Google Scholar
6. Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Fuoss, P., Dierker, S., Dennis, B. S., and Spaepen, F., to be published in Mat. Res. Soc. Symp. Proc. 157 (1990).Google Scholar
7. Spinella, C., Lombardo, S., and Campisano, S.U., Appl. Phys. Lett. 55, 109 (1989).Google Scholar
8. Taylor, A., Allen, C.W., and Ryan, E. D., Nucl. Instrum. Methods B 24/25, 598 (1987).Google Scholar
9. Iverson, R. B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).Google Scholar
10. Koster, U., Phys.Status. Solidi A 48, 313 (1978).Google Scholar
11. Howe, L. M. and Rainville, M. H., Nucl. Instrum. Methods 182/183, 143 (1981).Google Scholar
12. Christian, J. W., The Theory of Transformation in Metals and Alloys (Pergamon, Oxford, 1975), 2nd ed.Google Scholar
13. Kashchiev, D., Surf.Sci. 14, 209 (1969).Google Scholar
14. Olsen, G. L. and Roth, J. A., Materials Science Report Vol.3, No.1 (1988).Google Scholar
15. Spaepen, F., Acta. Met. 26, 1167 (1978).Google Scholar
16. Jackson, K. A., J. Mater. Res. 3, 1218 (1988).Google Scholar