Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T01:59:06.673Z Has data issue: false hasContentIssue false

Crystal Growth Studies During Aerosol Synthesis of Nanostructured Fullerene Particles

Published online by Cambridge University Press:  10 February 2011

J. Joutsensaari
Affiliation:
VTT Chemical Technology, Aerosol Technology Group, P.O.Box 1401, FIN-02044 VTT, Finland, Jorma.Joutsensaari@vtt.fi
E.I. Kauppinen
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
D. Bernaerts
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
G. Van Tendeloo
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Get access

Abstract

We have studied crystal growth during aerosol synthesis of nanostructured C60, C70 and mixed fullerene particles. Fullerene particles have been produced by aerosol droplet drying and crystallization as well as via vapor condensation starting from solutions of fullerenes in toluene. Morphology, crystallinity and crystal structure of fullerene particles produced in various processing temperatures were studied by scanning and transmission electron microscopy. The results show that both highly disordered and single crystal particles with a size of about 100 nm are formed at reactor operating temperatures of 500 °C and above. The ultrafine particles formed via vapor condensation are mostly polycrystalline. Many of crystalline particles have perfectly faceted morphology, i.e., hexagonal plate-like, decahedral and icosahedral shapes. The plate-like particles are lamellar-twinned and the decahedral and icosahedral particles are multiply twinned. Crystallite formation and growth mechanisms of the particles are discussed. In addition, electron diffraction results show that fullerene alloys with fcc structure can be produced via aerosol synthesis methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ball, P. and Garwin, L., Nature 355, 761 (1992).Google Scholar
2. Gleiter, H., Nanostruct. Mater. 1, 1 (1992).Google Scholar
3. Ichinose, N., Ozaki, Y. and Karsu, S., Superfine Particle Technology (Springer-Verlag, London, 1992), pp. 171-181 and 208215.Google Scholar
4. Kolari, P.J., Maaranen, P., Kauppinen, E., Joutsensaari, J., Jauhiainen, K., Pelkonen, K. and Rannikko, S., Medical & Biological Engineering & Computing 34 S1, 153 (1996).Google Scholar
5. Pratsinis, S.E. and Kodas, T.T., In: Aerosol Measurement: principles, techniques and applications, edited by Willike, K. and Baron, P.A. (Van Nostrand Reinhold, New York, 1993), pp. 721746.Google Scholar
6. Gurav, A., Kodas, T., Pluym, T. and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).Google Scholar
7. Sivaraman, N., Dhamodaren, R., Kaliappan, I., Srinivasan, T.G., Rao, P.R. Vasudeva and Mathews, C.K., J. Org. Chem. 57, 6077 (1992).Google Scholar
8. Baba, M.S., Narasimhan, T.S.L., Balasubramanian, R., Sivaraman, N. and Mathews, C.K., J. Phys. Chem. 98, 1333 (1994).Google Scholar
9. Gurav, A., Duan, Z., Wang, L-M., Hampden-Smith, M.J. and Kodas, T.T., Chem. Mater. 5, 214 (1993).Google Scholar
10. Gurav, A., Kodas, T.T., Wang, L-M., Kauppinen, E.I. and Joutsensaari, J., Chem. Phys. Lett. 218, 304 (1994).Google Scholar
11. Cleempoel, A. Van, Joutsensaari, J., Kauppinen, E.I., Gijbels, R. and Claeys, M., accepted to Fullerene Sci. and Technol. (1998).Google Scholar
12. Joutsensaari, J., Ahonen, P., Tapper, U., Kauppinen, E.I., Laurila, J. and Kuokkala, V.-T., Synth. Metals 77, 85 (1996).Google Scholar
13. Verheijen, M.A., Meekes, H., Meijer, G., Raas, E. and Bennema, P., Chem. Phys. Lett. 191, 339 (1992).Google Scholar
14. Verheijen, M.A., Enckevort, W.J.P van and Meijer, G., Chem. Phys. Lett. 216, 72 (1993).Google Scholar
15. Hayashi, T., Ohno, T., Yatsuya, S. and Uyeda, R., Jpn. J. Appl. Phys. 16, 705 (1977).Google Scholar
16. Morriss, R.H., Bottoms, W.R. and Peacock, R.G., J. Appl. Phys. 39, 3016 (1968).Google Scholar
17. Kräitschmer, W., Lamb, L.D., Fostiropoulus, K. and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
18. Luzzi, D.E., Fischer, J.E., Wang, X.Q, Ricketts-Food, D.A., McGhie, A.R. and Romanow, W.J., J. Mater. Res. 7, 335 (1992).Google Scholar
19. Harris, P.J.F, Douthwaite, R.E.. Stephens, A.H.H. and Turner, J.F.C., Chem. Phys. Lett. 199, 631 (1992).Google Scholar
20. Wagner, R.S., Acta Metall. 8, 59 (1960).Google Scholar
21. Hamilton, D.R. and Seidensticker, R.G., J. Appl. Phys. 31, 1165 (1960).Google Scholar
22. Waal, B.W. van de, J. Cryst. Growth 158, 153 (1996).Google Scholar
23. Ino, S., J. Phys. Soc. Jap. 21, 346 (1966).Google Scholar
24. Ino, S. and Ogawa, S., J. Phys. Soc. Jap. 22, 1365 (1967).Google Scholar
25. Duff, D.G., Curtis, A.C., Edwards, P.P., Jefferson, D.A., Johnson, B.F.G., Kirkland, A.I. and Logan, D.E., Angew. Chem. Int. Ed. Engl. 26, 676 (1987).Google Scholar
26. Marks, L.D., Phil. Mag. A 49, 81 (1984).Google Scholar
27. Doye, J.P.K., Dullweber, A. and Wales, D.J., Chem. Phys. Lett. 269, 408 (1997).Google Scholar
28. Kniaz, K., Fischer, J.E., Girifalco, L.A., McGhie, A.R., Strongin, R.M. and Smith, A.B. III, Solid State Commun. 96, 739 (1995).Google Scholar