Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-22T11:15:07.963Z Has data issue: false hasContentIssue false

Correlation between Surface Charge Accumulation and Excitation Intensity Dependent Red-Shifted Micro-Photoluminescence of Si-Implanted Quartz with Embedded Si Nanocrystals

Published online by Cambridge University Press:  21 March 2011

Chun-Jung Lin
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Kuo-Cheng Yu
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Hao-Chung Kuo
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Miao-Jia Ou-yang
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Gong-Ru Lin
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Get access

Abstract

The excitation intensity dependency of nanocrystallite Si (nc-Si) related micro-photoluminescence (μ-PL) from the multi-recipe Si-implanted quartz is characterized. The μ-PL at 724 nm contributed by nc-Si with 3-4 nm diameter is maximized after annealing at 1100°C for 3 hours. By increasing the excitation intensity from 10 kW/cm2 to 300 kW/cm2, the μ-PLs of 1-hr and 3-hr annealed quartz significantly red-shift from 723 nm to 725 nm and from 724 nm to 735 nm, respectively. This can be explained by the anomalous quantum stark effect due to a surface electric field oriented from photo-ionized nc-Si dots to quartz surface. After 1-hr illumination at power of 300 kW/cm2, the μ-PL peak wavelength of 3-hr annealed sample is further red-shifted by 2.5 nm. By measuring the accumulated surface charges built up during optical excitation process, the correlation between excitation-intensity dependent PL wavelength red-shift and the photo-ionized nc-Si surface electric-field related quantum stark effect is primarily elucidated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bae, H. S., Kim, T. G., Whang, C. N., Im, S., Yun, J. S., and Song, J. H., J. Appl. Phys. 91, 4078 (2002).Google Scholar
[2] Nishikawa, H., Nakamura, R., and Stathis, J. H., Phys. Rev. B 60, 15910 (1999).Google Scholar
[3] Fry, P.W., Itskevich, I. E., Mowbray, D. J., Skolnick, M. S., Finley, J. J., Barker, J. A., O'Reilly, E. P., Wilson, L. R., Larkin, I. A., Maksym, P. A., Hopkinson, M., Al-Khafaji, M., David, J. P. R., Cullis, A. G., Hill, G., and Clark, J. C., Phys. Rev. Lett. 84, 733 (2000).Google Scholar
[4] Patane, A., Levin, A., Polimeni, A., Schindler, F., Main, P. C., Eaves, L., and Henini, M., Appl. Phys. Lett. 77, 2979 (2000).Google Scholar
[5] Barker, J. A. and O'Reilly, E. P., Phys. Rev. B 61, 13840 (2000).Google Scholar
[6] Sheng, W. and Leburton, J. P., Phys. Rev. B 63, 161301 (2001).Google Scholar
[7] Sheng, W. and Leburton, J. P., Phys. Rev. Lett. 88, 167401 (2002).Google Scholar
[8] Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., and Brus, L. E., Nature 383, 802 (1996).Google Scholar
[9] Bonadeo, N. H., Erland, J., Gammon, D., Park, D., Katzer, D. S., and Steel, D. G., Science 282, 1473 (1996).Google Scholar
[10] Takeoka, S., Fujii, M., and Hayashi, S., Phys. Rev. B 62, 16820 (2000).Google Scholar
[11] Ahn, C. G., Jang, T. S., Kim, K. H., Kwon, Y. K., and Kang, B., Jpn. J. Appl. Phys. 42, 2382 (2003).Google Scholar
[12] Ledoux, G., Gong, J., and Huisken, F., Appl. Phys. Lett. 80, 4834 (2002).Google Scholar
[13] Mutti, P., Ghislotti, G., Bertoni, S., Cerofolini, G. F., Meda, L., Grilli, E., and Guzzi, M., Appl. Phys. Lett. 66, 851 (1995).Google Scholar
[14] Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
[15] Ma, Z., Pierz, K., Surf. Sci. 511, 57 (2002).Google Scholar
[16] Koch, M., Hellmann, R., Bastian, G., Feldmann, J., Gobel, E. O., Dawson, P., Phys. Rev. B 51, 13887 (1995).Google Scholar
[17] Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984).Google Scholar
[18] Bar-Joseph, I., Kingshirn, C., Miller, D. A. B., Chemla, D. S., Koren, U., and Miller, B. I., Appl. Phys. Lett. 50, 1010 (1987).Google Scholar
[19] Wakita, K., Kawamura, Y., Yoshikuni, Y., Asahi, H., and Uehara, S., IEEE J. Quantum Electron. QE–22, 1831 (1986).Google Scholar
[20] Shi, Y., Zhao, J. H., Sarathy, J., Olsen, G., and Lee, H., Electron. Lett. 33, 248 (1997).Google Scholar
[21] Choi, S. H., and Elliman, R. G., Appl. Phys. Lett. 74, 3987 (1999).Google Scholar