Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T18:46:21.506Z Has data issue: false hasContentIssue false

Correlation Between Oxygen Composition and Electrical Properties in NiO Thin Films for Resistive Random Access Memory

Published online by Cambridge University Press:  01 February 2011

Yusuke Nishi
Affiliation:
nishi@kuee.kyoto-u.ac.jp, Kyoto University, Kyoto, Japan
Tatsuya Iwata
Affiliation:
iwata@semicon.kuee.kyoto-u.ac.jp, Kyoto University, Kyoto, Japan
Tsunenobu Kimoto
Affiliation:
kimoto@kuee.kyoto-u.ac.jp, Kyoto University, Kyoto, Japan
Get access

Abstract

Admittance spectroscopy measurement has been performed on NiOx thin films with various oxygen compositions (x=1.0-1.2) in order to characterize localized defect levels. The activation energy and concentration of localized defect levels in NiOx films with low oxygen composition (x≤1.07) are 120-170 meV and lower than 2×1019 cm-3, respectively. From I-V measurement of the Pt/NiOx/Pt structures, samples with high oxygen composition (x≥1.10) did not show resistance switching operation, while samples with low oxygen composition (x≤1.07) did. The best oxygen composition of NiOx thin films turned out to be 1.07 in order to realize repeatable and stable resistance switching operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gibbons, J. F. and Beadle, W. E., Solid State Electron., 7, 785 (1964).10.1016/0038-1101(64)90131-5Google Scholar
2 Baek, I. G., Lee, M. S., Seo, S., Lee, M. J., Seo, D. H., Suh, D.-S., Park, J. C., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U-In, and Moon, J. T., Tech. Digests of the 2004 IEEE Int. Electron Devices Meet., pp. 587590.Google Scholar
3 Shima, H., Takano, F., Akinaga, H., Tamai, Y., Inoue, I. H., and Takagi, H., Appl. Phys. Lett. 91, 012901 (2007).10.1063/1.2753101Google Scholar
4 Chen, A., Haddad, S., Wu, Y.-C., Fang, T.-N., Lan, Z., Avanzino, S., Pangrle, S., Buynoski, M., Rathor, M., Cai, W., Tripsas, N., Bill, C., VanBuskirk, M., and Taguchi, M., Tech. Digests of the 2005 IEEE Int. Electron Devices Meet., pp. 746749.Google Scholar
5 Argall, F., Solid State Electron. 11, 535 (1968).10.1016/0038-1101(68)90092-0Google Scholar
6 Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys., 98, 033715 (2005).Google Scholar
7 Daal, H. J. Van and Bosman, A. J., Phys. Rev., 158, 736 (1967).10.1103/PhysRev.158.736Google Scholar
8 Pautrat, J. L., Katircioglu, B., Magnea, N., Bensahel, D., Pfister, J. C. and Revoil, L., Solid State Electron., 23, 1159 (1980).10.1016/0038-1101(80)90028-3Google Scholar