Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T07:26:49.501Z Has data issue: false hasContentIssue false

Copper Oxide Edge-Termination for GaN Schottky Barrier Diodes with Low Turn-on Voltage

Published online by Cambridge University Press:  16 January 2012

Yuichi Minoura
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Naoya Okamoto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Masahito Kanamura
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Tadahiro Imada
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Toshihiro Ohki
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Kenji Imanishi
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Keiji Watanabe
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Kazukiyo Joshin
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Toshihide Kikkawa
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan
Get access

Abstract

In this study, we propose copper oxide (CuOx) edge-termination for GaN-based Schottky barrier diodes (SBDs) with low turn-on voltage. CuOx fabricated by thermal oxidization of sputtered Cu film at 275°C consisted mainly of Cu2O which is known as a p-type semiconductor. We applied CuOx edge-termination to GaN SBDs with tantalum (Ta) Schottky electrode which has low work function of 4.25 eV. The experimental results of current-voltage characteristics insisted that CuOx edge-termination structure was effective to increase breakdown voltage of GaN SBDs with keeping low turn-on voltage of 0.29 V at 10 A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kikkawa, T., Makiyama, K., Ohki, T., Kanamura, M., Imanishi, K., Hara, N., and Joshin, K., Phys. Status. Solidi, 206, 1135 (2009).Google Scholar
2. Ozbek, A. M. and Baliga, B. J., IEEE Electron Device Lett. 32, 300 (2011).Google Scholar
3. Saitoh, Y., Sumiyoshi, K., Okada, M., Horii, T., Miyazaki, T., Shiomi, H., Ueno, M., Katayama, K., Kiyama, M. and Nakamura, T., Appl. Phys. Express. 3, 081001 (2010).Google Scholar
4. Zhang, A. P., Johnson, J. W., Luo, B., Ren, F., Pearton, S. J., Park, S. S., Park, Y. J. and Chyi, J. I., Appl Phys.Lett. 79, 1555 (2001).Google Scholar
5. Nikitine, S., Grun, J. B. and Sieskind, M, J. Phys. Chem. Solids, 17, 292 (1961).Google Scholar
6. Tanaka, H., Shimakawa, T., Miyata, T., Sato, H. and Minami, T., Appl. Surf. Sci. 244, 568 (2005).Google Scholar
7. Han, J. W. and Meyyappan, M., Appl. Phys. Lett. 98, 192102 (2011).Google Scholar
8. Ishizuka, S., Kato, S., Maruyama, T. and Akimoto, K., Jpn. J. Appl. Phys. 41, 5060 (2002).Google Scholar
9. Maruyama, T., Jpn. J. Appl. Phys. 37, 4099 (1998).Google Scholar
10. Matsumura, H., Fujii, A. and Kitatani, T., Jpn. J. Appl. Phys. 35, 5631 (1996).Google Scholar
11. Ding, P. J., Lanford, W.A., Hymes, S. and Murarka, S. P., J. Appl. Phys. 75, 3627 (1993).Google Scholar